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FOREWORD

This document discusses the general principle of doing Monte
Carlo calculations with particular emphasis on reducing the amount
of work involved. It does not discuss, but for a few sxceptions,
relationships between probabilistic problems and deterministic ones,
and how either can be ghosen 0 model the other. Mors importantly,
it does not include any important specific applications. Both of
these other subjects are widely discussed in Monte Carlo literature
by many pesopls. At a later date the author hopes to put out a
book on the subject which will supersede this report and include
applications.

The work that preceded this rsport has been supported by the
U.S. Air Force and several laboratories of the A.E.C. In addition,
I would like to express my appreciation to the Reactor Division of
the A.E.C. for their sympathetic and long range support of basic
studies in the Monte Carlo method.

A short description of the Mcnte Carlo method can be given
as follows. The expected scors of a player in any reascnabls
game of chance, however complicated, can in principle be estimated
by averaging the results of a large number of plays of ths game.
Such estimation can be rendersd more sfficient by various devices
which replace the original game with another known ‘o have the
same expected score. The new game may lead to a more efficient
estimate by being less srratic, that is, having a score of lower

variancs or by being cheaper to play with the equipment on hand.






Thers are Obviously many problems about probability that can be
viewed as problems of calculating the expected score of a game.
Still more, there are problems that do not concern probability but
are none the less equivalent for some purpcses to the calculation
of an expected score. The Monte Carlo method refers simply to the
exploitation of these remarks.

The method has been extensively used by statisticians and
others under the name of Model Sampling. Many of the variance
reducing techniques discussed in this report have been developed by
statisticians for use in Survey Sampling.

John von Neumarn and Stanley Ulam seem to be mainly responsi-
ble, both as practitioners and propagandists, for the present
widespread use in physics and engineering. They also seem to have
been the first to have advocated the idea of systematically inverting
the usual situation and treating determinate mathematical problems
by first finding a probabilistic analogue and then solving this
analogue by some experimental sampling procedure. In this report
though,most of the applications ares to problems which have been
derived from probabilistic situations. The pame of Monte Carlo is
used rather than Model Sampling partly because we wish to differen-
tiate the relatively sophisticated sampling techniques used in the
former from the straightforward approach that seems to be customary
in the usual applications of the latter, and partly because the
more picturesque name of Monte Carlo has Just about replaced its
predecessor in physical applications.
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In writing a report of this nature it is difficult to apportion
credits and acknowledgments in a reasonable manner. The author has
spent about half of his time betwwen 1948 and 1952 on applications of
the method. Scme of the applications with which he has been concerned
have been fairly large problems involving the collaboration of
several organizations and many individuals. Because major emphasis
has always been on physics or engineering, and not statistics, and
also because most of the problems are classified, it is difficult to
pinpoint many individual contributions. Therefore, axcept for
Part I (inspired by Joim von Newmsan) and for spesifis statistical
suggestions, thers will be almost no specific acknowledgments made.
Instead, a simple listing of the individuals who have contributed
to the problems upon which we lsarned how to do Monte Carlo will be
given, 4
The following either originated problems or collaborated on
their design: Hans Bethe, Jim Coon, Robert Day, Walter Goad,
Herbert Goldstein, Prederic de Hoffmann, Frank Hoyt, Richard Latter,
louis Nelson, lothar Nordheim, Milton Plesset, Fred Reines, Paul
Stein, Edward Teller, Robert Thomas and Carl Wahlske.
I am indetted to the following for helpful discussions:
George Brown, Herman Feschbach, Francis Friedman, Gerald Goertzel,
Mario Juncosa, John von Neusann, Melwvin Peis;koff s Laonard J. Savage,
John W. Tukey and Theodore Weiton.

Most of thes actual work of programming, coding and computing
was done by Barbara Batchelder, Barbara Cohen, Ruth Ann Engvall,

Lois Foster, Esther Gerstan, Irwin Greenwald, Jean Hall, Clyde Hauff,
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Herbert Hilton, Robert Johnson, Winifred Jonas, David langfield,
Don Madden, Wes Melahn, Cynthia Mercer, Leona Otfinoski, Josephine
Powers, Frieda Rosenberg, Cliff Shaw, and Charles Swift. Without
their high morale, professional skill, and enthusiasm, it would have
been impossible to have mat many of our deadlines on the always
capricious and sometimes malignant computing equipment available
from 1948 to 1952.

Finally, an inadequate thanks to Theodore Harris and Andrew
Marshall, with vhom the author has collaborated extensively and on
whom he has always beer; able to lean for a lsarned opinion on
statistics and probability. Some of the ideas in this report have
previously appeared in joint papers by them and the author,

I would also like to thank Leonard J. Savage for reading an
esarlier version of this report and making prolific comments. This
version doesn't show the full effect of his comments as I am saving
many of them for a future book.
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INTRODUCT ION

The Monte Carlo Method is concerned with the application of
random sampling to problems of applied mathemstics. While subtle
or difficult questions may arise in applications, most problems
can be treated without using much statistical theory. Nevertheless
statistical theory can be very helpful. This report presents an
eslementary exposition of same of the ideas and techniques that have
proved useful in problems with which the author has been concerned.
In this case, the word slementary implies that the author has tried
to make the presentation intelligible to a mathematician, physicist,
or engineer with only a slight formal background in probability
theory. There will be a strong flavor of the *sookbook” about many
selocﬁons. The author can only suggest judicious skipping.

It will be assumed that the reader has in intuitive notion of
the idea of probability (even though philosophers may argue). That
is, that he knows what is meant by the statement "The probability
that a 'fair' coin lands heads up when tossed is 1/2," and that he
knows and has had some basic experience with the simplest rules of
the calculus of probabilities.l In any case most of the statistical
ideas that ars used will be prssented or reviewed in the first two

chapters.

1 These rules are of the following types. The probability that
one or the other of two mutually exclusive events occurs is the sum
of the separate probabilities. The probability that two independsnt
events occur is the product of their separate probabilitiss, etc.
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I. TECHNIQUES WITH RANDOM VARIABLES

1. Random Variables

In the following a random variable (generally denoted by a
capital letter) will mean a numerical quantity (or quantities)
associated with a game of chance in such a way that as the various
events or possible cutcomes of the game occur, the random variable
takes on definite walues. Thus one could associate a random variable
C with the coin tossing process by saying that when a head comes
up, C = O, and when a tail comes up, C = 1. C then has a probability
of 1/2 of being zero and 1/2 of being 1. All other values have zero
probability.

Associated with any random variable X is a cumlative distri-
bution function (c.d.f.) which will be called "F(x)". F(x) is defined
as the probability that the random variable I will assume values less
than or equal to x. If F(x) is the integral, at least in som‘regions,
of a function f(x), the random variable is said to have a probability
density then and £(x) is called the probability density function
(p.d.f.). If P(x) makes a finite jump at some point x_, there is a
non=gerc probability of X, oocurring. Thus in the coin tossing problem
nmentioned abovg

F(C) =0 C<O
- 1/2 0sc<1l
=1 lsC<o®



1¢ £(x) exists everywhers, F(x) must be continous, and tne
random variable has a 3ero probability of taking on any particular
va.lue.l It is then customary to speak of the probability that the
random variable lies in the interval between x and x + Ax. This
probability is F(x ¢ A4x) - F(x), for positive Ax, or approximately
£(x)ax if Ax is small. A common but elliptical statement, "the
probability that X takes on the value x is £(x)| or f(x)Ax] ," is to
be interpreted in the above sense. In the ciase of a rinig'a interval
(a,b) the probability that a < X < b is F(b) - F(a) or[ f(x)dx if
£(x) exists. In the future the qualification "if f(x) exists" will
not be used but should always be understood.

T+ is sometimes necessary to associate two or more random
variables with the same process. One then has a joint c.d.f., P(x,7),
which is defined to be the probability that the event (X<x, T<Yy)
occurs. The function f£(x,y) defined by

£(x,y) = % . 33;?5

is called the joint p.d.f. for x and y. £(x,y)AxAy is approximately
the probability that the event (x < X < x + Ax, ¥ < I < ¥ + Ay) occurs.
Soms other important definitions and concepts are

F(x) = F(x, o)

o0
£(x) = f £(z,7)dy
o

o OF(x, c0)

1 It is still possible to use p.d.f.'s when F(x) is discomtimmous
by usi..ng the formalism of the Dirac dalta function. This will
occasionally be done when it simplifiss the appearance of formulae.

-
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® podof. of x (called marginal p.d.f. of
X in this csontext.)

g(y) = [ :f(x,y)dx

o Fleo,7)
= marginal p.d.f. of ¥y

f(x:y) = £(x,5)/e(y)
= ped.f. for X given that Y has the value y
(sometimes called the conditional p.d.f. of x)

glyx) = £(x,y)/t(x)
= p.d.f. for Y given that X has the value x

The same for F(x:y), G(y:x), and the extensions to
more than two variables,

The p.d.f. of a random variable restricted to a portion of its
full domain is sometimes used, for examples the p.d.f. of X for a < x is
Just I'.rj('% 5 1.0., proportional to the old density in the region
a < x but renormalized, and zero slsewhere.

If F(x,y) bappens to be equal to F(x)G(y), the random variables
are said to be independent of each other. If this is not true, the
random variables are said to be dependent. Three random variables
are callsd independent if F(x,y,z) = F(x)G(y)H(z); it is not enough
that the variables be independsnt in pairs.

A random variable has associated with it a sowcalled expected value.

This notion is central to our considerations and we wiil discuss it
more in what follows. If f(x) is the p.d.f. of X, the expected value
of X is definea as o0

e -f x f(x)dx
- 00 :



The reader will rsadily notice that this is a generalization of
the ordinary arithmetical average or mean. Monte Carlo is cone

cerned almost exclusively Wi th the caloulation of such averages.



2. Transformations of Random Variables
and Their Realization

Consider two random variables X and T and the monotonic
increasing transformation Y = T(X). If X has the known c.d.f. F(x),
it is a simple matter to calculate G(y), the c.d.f. for y. Since Y
is less than or equal to y if and only if X is less than or equal to
T-l(y) the probability of these two events occurring must be the

same. Therefore if x and y are corresvonding values,

F(x) = G(y)
But
x = T(3)
30
a(y) = 7 [1735)] (1)

A crucial step in the Monte Carlo method is the realization of
a given distribution function F(x). By that is meant the construction
of an actual game of chance with which is associated a sequence of
independent random variables xl, xz, e o o 3 xn, each with the
cedof. F(x). It is the empirical values X5 Xpy 0 o« 5 X, ina
single actual play of the game that constitute the statistical data
for a Monte Carlo calculation. .

The construction of some of the necessary games of chance is
discussed in the sections which follow. The point to be made here
is that some distributions can be realized more easily than others
so that it is important to study the process of constructing a
realization of G(y), given a realization of F(x). How important
may be judged from the fact that if P(x) is continuous, then for any

G(y) there is a T such that (i) holds.
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The most cbvious, and often the best, way to realize G(y) on
the basis of a resalization of F(x) is simply to take for the
sequence ¥, ,

7, = (xy) (2)

In actual computations on high speed machines it may, however,
be quite difficult to evaluate T(x,). It may then be convenient to
use instead an approximate transformation '?(xi) or one of the
other techniques to be discussed.

Before squation (2) can be used to realize G(y) it is necessary
first to generate independent values distributed according to F(x).
For this purpose it is often convenient to use as a basic distribution
the uniform distribution between O and 1; i.e., with

f(x) =0 or F(x) =0 x$0
=1 - x 0<x<1l
s Q =] lsx

A discussion of various techniques for producing independent
values with this distribution is found in Appendix I. These values
are referred to as random rumbers (sometimes reasonable facsimiles
called pseudo random numbers are used instead), and denoted by Ri.l
By using equation (2) which now takes the equivalent forms

G(y;,) = Ry
y, = OH(R,) = T(R,) (3)

b
/ g(y)dy = Ry
- m

1 Because of previcus commitments, these independent random variables
and the independent variable of their p.d.f. will both be denoted by 2
capital letter. It is hoped that this will not cause confusion.
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it is possible to gensrate a set of independent random wvariables
Ty, + + o T with an arbitrary ‘c.d.t. G(y).

Sometimes it is necessary to represent a multidimensional
p.d.f. For instance, equation (3) can be generalized to handle
three variables as follows:

From f(x,y,3) the p.d.f.'s f(x), g(y:x), and h(z:x,y) are
obtained. A random (x,y,z) can be determined by first picking

three random numbers and then solving the following equations

fxf(x')dx' - R
- 00

y
[ g(y':x)dyt = R, ()

z
/ h(z':x,y)dz' = 33
- OO

consecutivelys



3. The Rejection Technique

It has been mentioned that squations (1) and (2) may be awkward
to use in a high speed computing device. An alternate method of
producing independent sample values of a distribution F(x) is by the
use of the rejection tachnique.

For a simple example of this technique a p.d.f. f(x) with the
following properties will be considsred (See Figure 1,.page 12).

£(x) =0 x<a,a+b<x
0<f(x) <H a<x<a-+bh

The rejection technique as it applies here can be axplained
graphically with refsrence to Figure 1 as follows. Let a point be .
chosgn uniformly at random from the rectangls with base of length b
and height M. If this point falls below the graph of f(x) accept
the abscissa as a sample value. If not, reject it and try again. The
full technical meaning of these instructions may be expressed analytically
thus.

1. Obtain two random numbers, F‘l and Rz,

f(a+bﬁ2)
2. If Rl is less than or equal to —> lat I = a*sz,

f(a+baz)
3. If Rl is greatar than ) pick two new random numbers,
R‘l and Rz, and try again.

If no rsjecticn procedure nad been used, X would have bean

uniformly distributed between a and a+b. However, only those x's

Wwere saved that happened to have Rl < £§!x_)_, an event that has a prob-

f
ability —S—cl, of occurring (since if k is less than 1, the prebability

that Ry < k is just k). Therefore, in view of the aver tacit assumption
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that 81 is independent of Rz, the probability of selecting a value
of X in the region x to x+Ax is equal to the probability of originally
getting a value in this region (Ax/b) times the probability of saving
this x value [i'(x)/ﬂ].

The probability of obtaining a satisfactory x on the first
trial is the sum of the probabilities of selecting an x in any one

of the separate Axi regions, or approximately

f(xi)Axi
3

In the limit, as Axi—bo. this is just

a+b
f(x)d&x
[ ==

a+b *
Since j; f(x)dx = 1 the above expression is just 1/bM. The probability
of accepting some value the first time is called the efficiency of the
technique, because of its obvious economic implication for applications,
and is denoted by E. leE is the probability that the first value
picked will be rejected. The probability that the process will fail
n-1 times and then succeed on the n&* trial is (l-E)n']T:. The expected

number of trials, n, is then
o0

ie Z n(1-E)™ £ (S)
ns oo

- BZ&E (1-g)"
n=

-EF [f(l—aﬂ

n=1

d (1-E)
- B u

=(I-E)



The principle of the rejection technique can be illustrated by

the following diagram.

£(x)

=->
1
'’

Figure 1

In Pigurs 1 a rectangle of arsa bM encloses he p.d.f. £(x).
The shaded portion under f(x) has unit area. If a number of points
are selected in the rectangle at random from a uniform distribution,
but only those points saved that f£all within the shaded portion,
then the probability that any of these saved values lies between
x and x + Ax will be f£(x)ax/bM. The fraction of points saved will
be given by (shaded area)/(total area) or 1/bM.
The rejection technique may be generalized as follows. Let
a(x) and m(y) be p.d.f.'s and let U(x) be an arbitrary function. Then
1. Select an x out of the p.d.f. n(x)
2. Select independently a y out of the p.d.f. m(y) [c.d.f. M(y) |
3. If y < U(x) accspt x. Otherwise repeat steps 1 and 2.
It is often computationally convenient to write the inequality
7< U(x) in the form s(y) < t{(x) where
T(x) = s7t E’.(xﬂ
The a priori probability of getting an x in the region
(x, x + Ax) is, of course, n(x)ax. The probability of accepting

X, E:rcbability that ¥ < U(x)] , 1a M El‘(x)] . Therafore, the
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probability of selecting an x in the region dx and accepting it is
¥ [1(x)] n(z)ex
The probability of getting any x at all on the first iteration

is Py
E -/ HEr(xﬂ n{x)sx (6)
-

By choosing m, n, and T appropriately it is usually pos.sible
to design a numerically convenient and efficient process for
selecting an x from the p.d.f. f(x) = HEI‘(:)] n(x)/F.

If, in a specir case, Y is the same as R, M is then the
distribution of R. If alsc U(x) is bounded such that U(x)< 1, we
can say

M El(x)] = U(x)
The technique now beccmes:

1. Select an x out of the p.d.f. n(x)

2. Select an R

3o IfR <« _%S(.xx)T,whoraK is larger than or equal to the
é—%} s accept x. Otherwise repeat steps

1 and 2.
The efficiency of the technique is now 1/X. Hence E can be equal

to, but not larger than, the minimum value of;-g% . If it bappens
that only a lower bound for this minimm value is known, than the

sfficiency will be less than it would havs been.

Since the areas under the curves f(x) and n(x) are the same,
the requirement that the efficiency be high (i.e., close to 1) imposes
a seriocus restriction on n(x). One way to meet it is to choose n(x)

ngimilar® to £(x). It must also be simple to select {f rom, or there
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would be no point in using a rejection tecimique. The choice of
n(x) is a compramise between these two criteria.
Variations of the basic rejection technique

In certain cases, realization of the variations mentioned below

may give rise to considerable savings in computing time.

1. Select x out of n(x), 7y out of ml(y), and y, out of xnz(y)
and accept x if either vy < 'rl(x) or ¥, < '1'2(::). The
probability of accepting x now beccmes

s el < 1y el Byl

2. Break up the p.d.f. into the form

£(x) .ZAiHiEri(xB ni(x)

A
With probability wp- pick x out of n,(x) and y out of
J

mi(y) and make the test y < Ti(x). If the test faila re-
peat the whole process. The expected number of ilterations
is ZAi; i.e., the afficiency is 1/2;11.

A brief insight into the nature of this second variation can
be obtained by considering the case when the Mi(y) =y i.e,, 71is
selected from the uniform distribution. Then £(x) can be broken up
into the form

£(x) -Zri(x)ni(x)
i
r; ()
AT (3
i 1

- ZAiTi(x)ni(x)
i

The Ai here are, it is clear, the probability of getting i
multiplied by the maximum value of Ti(x). The A; must be large enocugh
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r, (x)
to insure that T“ < 1. As before the efficiency is l/ZA and
an afficient procaas is one in which the ry (x) vary but little,
in 2 sense. When the ri(x) are constants then the ZAi = 1 and
the process is 100% efficient; it then just reduces to a convenient

way to sampi. from a p.d.f.
If the i's with relatively uniform ri(x) have large Ai'a while the

ones with large variations have small Ai's,, the process will still be
efficient.

Sometimes as a special case of the above, it is desirable to take

ni(x) to be the same function; i.s., to break up f(x) into the form
£(x) = 3 4,7, (x)n(x)
T(x) =3 A7 (x)

This is advantageous when it is difficult to find the maximum value
of T(x), but relatively easy to find the maximum value of the individual
terms. However, breaking up T(x) into separate terms always decreases
the efficiency of the techmique.,

A special case of this last situation occurs very frequently
when the p.d.f. f(x) is fitted by sections. For example if

Xie1
pi - / f(x)dx

X
is the probability that the event x; <X <x,,, occurs and £, (x) is

a fit to .;(x) in this segment of the x axis then
i

f(x) = Zpifi(x)
where the fi(x) are themselves properly normalised p.d.f.'s. The
computer can then pick the i index with probability Py and then pick
X out of ri (x) by any convenient technique.
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L. Manipulations with Distributions

The problem of generating values of random variables will
now be considered from a slightly different point of view. Given
two independent random variables x and y and their c.d.f.'s, P(x)
and 6(y), what is the c.d.f. of a function z(x,¥y)? There is perhaps
no general answer easily given here. But a number of interesting
special functions will be considered.
1} zex.7

The domain of I is considered broken into intervals by the points
XyseresXpe The length of each intarval is Axi "Xy = Xy

The probability that Z < z is equal to the sum of the probabilities
of all the mutually exclusive ways in which X + Y can be less than 3.
Neglecting details of rigor, this can be obtained by multiplying the
probability that x, <X < Xy [F(x,,)) = F(x;)] by the probability

that T <3z - % [G(z-xi)] , and summing over all possible x,; 80

H(z) = J0(zx,) [Flxy,q) - Flxy)] = 3 6lz-x )20z, Jax )
i i
The limit of the above expressions will be recognized as being
the definition of the Stieltjes and Riemannian (ordinary) integralsz
respectively. o0 oo
H(z) = /G(z-t)d‘i(t) = | G(z-t)z(t)dt (3)
Lo =)
o [~ -]
= | F(z-t)do(t) = f F(z-t)g(t)dt
‘. Oo - OO
by symmstry.

1l In individual instances of this and some of the other functions it
is often simpler in thsory and practice to use Fourisr and Laplace
Transform techniques. For a discussion of these msthods see e.g. Cramer,
Mathematical Methods of Statistics, and Wilks, Mathematical Statistics.

2 See eo.g., Widder, Advanced Calculus, for a discussion of the
definitions of these intaegrals.
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This can also be wrg.ten
h(z) -/ g(z=t)r(t)at (9)

-~

o
'[ £(z=t)g(t)at
@

2, 2=2XY (0<XY)

The probability that 2 < z is the probability that X is on
region 0t [P(t) or £(t)at] times the probability tmat Y < § [0(z/t)]
summed over all possible values of t; so

o0 oo
H(z) = [ G(§)drF(t) = / (@) (t)at (0)
0
L] )
- / F(F)do(t) = / F(e(r)at
o 0
= (-]
h(z) -f : g (Par(t)= / THHOLE (1)
0 0
[~ -]
f : £(Pac(s) = [ HEPIOLE
.0 o)

3. z2=3(0<5,1)

The probability that Z < z is du(t) or g(t)st Jhe probability
that Y is in region At | tines P(st) fthe probability tnat X < 2t]
summed over all possible y; so

0 Qo
H(s) -j' F(zt)da(t) -f F(zt)g(t)dt (12)
0 0
© ®
h(z) -f t£(zt)do(t) -f tf(zt)g(t)dt (13)
o) ()
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L Z = smaller of X and ¥

The probability that X is in the region Ax 1s of course

£{x)Ax and tne probability that Y is larger than x is 1 - G(x);
so the probability of getting X in the region Ax and accepting
it (1.e., of its being the smaller) is f(x)ax [L = G(x)] . Similarly
the probability of getting y in the region Ay and accepting it ia
g{y)ay [1 - F(y)] . Since the two events aie mutually exclusive
ignoring ties, as may be done, the probaoility of one or the other
is just the sum of the separate probabilities; so

h(z) = £(z) [1 - 6(z)] + &(z) [1 - F(z)] (1)

= £(3) + g(z) = £(z)a(z) - g(z)F(z)

A few more results follow without complete discussicn.
S. Z=larger of X and Y

h(z) = £(z)e(z) + g(2)F(z) (15)

6. Z > (smaller of X and Y)/(larger of X and ¥) (0 < X,I)

This is a corollary of sxample 3.
h{z)Az = probability that (; - 3 or % = z)
Since the two possibilities are disjoint,
n(a) = [ % {ta0at) - f(t)g(zst)pdt o<z <1 (16)
7. 2 = (larger of X and Y)/(smaller of X and 7) (0 < X,T)

Same distribution as 6, 1<z
8. W = the middle of X, ¥, and 2
v(w) = £() [G(w) + B(w) = 20()H(w)] (17)
+ g(w) [F(w} + B(w) = 2F()H(w)
+ h(w) [F(w) + C(w) - 2F(w)G(w§]

where v(w) is of course the p.d.f. for W.
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5. Examples

Introduction

The various methods that have been described are illustrated
by the examples in this section. Some of these examples are
actually useful for computational purposes, some have been included
for pedagogical reasons, and some are included for the sake of
completeness (in th§ handbook sense). In socme cases the verifica~
tion of the formulae involved is so simple that it is left out.

It might be a useful exercise for inexperienced readers to actually
carry through this verification for a few of the examples. Others
may want to skip the whole section except for reference purposes.

In mn& of the examples several methods are considered. Which
method the computer should use depends on the application, the
computing equipment available, and the relative importance of
programming time, computing time, and memory.

It is often desirable to reflect a p.d.f. about a line x = a.
This can always be done by replacing x by 2a-x, as is occasionally
explicity done in the examples which follow.

Primarily, however, the examples (consisting of the derivations
which follow them) can be thought of as part of a library which will
be useful in applications. This means that where in Section L the
distribution was unknown, in this section we begin with a distribution,
and consider the most convenient method which will realize it. More
such examples and methods are of course invited.
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Table of Examplas to be Conaideredl

l
Lomt 0<xsl U
!

1
30 ﬁx

ho l-lx‘ -1<x<1

S¢e 2 =-2x 0<x<1

pa—

U oa asl
1 2(a=x) -
7. 5 [2-—-6—-} a-b<x<a

1 The ordar in which the p.d.f.'s are given has littls significance.
They ars just grouped somewhat according to simplicity, method of
generation, and field of apnlication.



el e

» (1) m
8. pn(l-0)™t + (1-p)m™ O <x<1l

fl\

$--- -

9+ ((1-p)m(a=x)™"2

n
¢ ]
nel N
E.(.x_'_:l_ a<r<a+bh /L

[}
?
> :G a. a+‘-
10. 6(x-x2) 0<x<l
' v
pag 1 l<x<a
) m - \
1 J; ’
= <2/ )
12. '\J% e 0 <x<o® (Gaussian) ‘
!

-Xy
13. nE (x) = n %n—dy 0 <x<0® !
’ ’ "

1 ’
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%(e-u-ebx) 0O<x< ! .
= 1
wxo(Z'Vah::)-ab/%o. aix (y * Pyy 0<x<

0
_m_z Of_x<a°
(x+m)

ae X, bg'hz - (a.-ob)g'("’b)x

1l o1
*® {(Wb)z (a¢bx)2 }

ab{ =i 1
(ax*b? * (g-@bx_)z

(‘,b)a"(a"b)l > (b‘*C)O-(b‘e)x

- 2(a¢b+c)a'(a’*b’°)x

0<x<o®

0<x < 1

l<x<eo

+ (cva)e~(o+alx

0<x<c®




1.

17.

“18.

19.

%(1_.-&)

1 ,,=b -bx
1 (ombl(xa)_gbx,
1

—r— forO0<a,

X
Xe

~2_x cosh x
a-l

1.0’1’2,.0.

2 _(sinh 1 -sinhx) 0<x<1

«a2} e

~—~———

B A

(Poisson)

e -

Anl0na.
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<

i
_l_ex O<xf_l 1'
e=1 - !
— |
ex sinh x O:xf_l 1l

e {(cosh 1 - cosh x) 0<x<1 B

Also the following joint p.d.f.'s of (x,i):
< 1-x g}t - (i-xzi 0<x<l
(i-l)‘.’ i'. ’ - . i - 1, 2’ o o @

Also, the marginal p.d.f.t I

rr . : nHﬂnng_“_
-,

'.x 0-<_x<cc

= 1n(l-x) 0

IA
L]
A
(]

1.141;31% 0<xgl




22,

721 1n £

=X

3.259 15&

-1.629 1n (1-x%)

Also the following p.d.f.'s for (x,i) or i alone:

Al.d, g

1.216 ,-1:. in (1+x)

5.63 [ - 3 1n(1ex)]

O:x:l
i»),2, ¢ 00

1.1.2,000

-2

—

- — e



23.

25.
26.
7.

-26-

Also the joint p.d.f. for (x,i) and i alone:

xi-l x" ng:l

=T "1 11,2, 600
2401 '

ﬁ 1 =21, 2, 6 ¢« «
i°(i+1) '

The Klein=-Nishina Scattering Formila.

Neutron=-deuteron elastic scattering.

Neutron-deuteron inelastic scattering.

General inelastic scattering of neutrons,

Fit to experimental data of elastic scattering of li MEV neutrons in

copper. -
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Representations of the p.d.f.s Considered

In the discussion of the representations of each of the distributions
below, it is assumed that there is a large store of (independent, uniformly

distributed) random numbers, symbolized R, Ry, etc., available.

-1

1. h(z) = n2" 0<z<1

Let Z be the largest of n random numbers.

The proof is by induction. let X be the largest of n-l
random numbers and assume that its p.d.f. is (n-1)x""2, 0 <x<1l.
Lat Y equal another random number and let Z be the larger of X and Y.
Then as mentioned in Section L,

h(z) = £(z)6(z) + g(z)F(2)
- (n_l)zn-Zz - zn—l
n-l

Since Z is the largest of n~l random numbers and another random

number, it is the largest of n random numbers.
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2. h(z) = n(1-s)*t 0<z<1

Let Z be the smallest of n random numbers,
This is just a reflection of example 1 about the vertical

line 3 = 1/2.

3. 2(x) = %Tx(l-n)/n for 0<n 0O<x<1l

Let X = R”
The c.d.f. F(x) can be found as follows:

F(x) = probability that X <x
e probability that R" < x

= probability that R < x/®

- /1

Then f£(x) = % x(l'“)/n

In actual practice, only the integral values of n are of
interest. The p.d.f.s obtained by putting n = 1/2, 1/3, etc. are
often more simply obtained by the method of sxample 1.

IfXsle Rn, all of the abovs curves are raflected about
3he line x = 1/2,



L.

]
n
0

]

£(x) 1 - |x| -l<x<1l
LetI'RI-Rz
Then from example 1 of Section L,
£(x) =0 ' x<=1
=1l+x -1l<x<0
=1l-x 0<x<1l
=0 l<x

IfX = R1 + RZ’ the p.d.f. would have been translated one

unit in the positive direction.

f(x) =2 «2x 0<x<1

Let X = |ai-a.2| or let X = the smaller of R, and R,.
Then the density of f(x) is the sum of the two disjoint possi-

bilities that R, = R, = x or that R, = R, = x. Using example L,

we have

(o} elsewhere



6.

7.

f(x)-%[z-g(-?—ﬁ a<x<a+b

Letx-a-bb'Rl-Rzl

This is just a translation and dilation of example 5. Use
for the X of this example a + bY where Y is the variable of

mle 50

%E-&?l] a-b<x<a
Letx-a-blRI-Rz'

This 1s a reflection of example 6.

rm(l-:lt)n'1 + (l-p)uxm'l 0O<x<l

Let X be, with probability p, the smallest of n random numbers;
with probability (].-p)J the largest of m random numbers.

This is a mixture of examples 1 and 2. With probability p
(that is, after a test, R < p ?) use example 1. If not exampls 1,
use example 2. Then

f(x) = pn(l-z)n°1 * (l-p)mz'“"1

Ifpel/2and m =n,
£(x) = n/2 E:n'l . (J,;)’"ﬂ

which is symmetric about x = 1/2.



9

(1'P)ll(l-z)m-1 a-c<z< a
n(z) = cmn-l
E.(Eni)—- a _<. z _<_ a+b
b

With probability p, pick X out of nx™ ' and let Z = a + bX.
With probability 1-p, pick X out of m™ ~ and let Z = a - cX.
One piece is like example 1 and the other is like example 2.

IZp=1/2, m = n, and b = ¢, then the p.d.f. is symmetric about

zZ=a and 1
h(z)-nlzl?-‘-n-.— a-b<z<a+h
b .
B(x) = 6(x-x°) 0o<x<1

Let X be the middle of R,, R,, and R3 (Section 4, example 8).

e) = g Lexza
The most obvious method is to solve the equation

fx-{%;dt-ﬁ

1

This is inconvenient, because both the axponential and a logarithm
must be calculated in most applisations,
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Five rejection mt.hods for selecting from this p.d.f. will now
be considered. Ths axample will Vbo given such a thorough treatment,
not because thers is a great practical importance in avoiding
exponentials and logarithms, but because it gives a good opportunity

to explain and illustrate devices herstofore mentioned only abstractly.

a. The straight-forward general method:

ObtaianandRz

-
x=l+ (a.-l)B.]_.

y

TEST

xR.Z:I

Ve

Choose new
Ry and R,

| IR

The a priori probability of arriving at a given value of x
is aifI and the probability of accepting it is %, so the efficiency

is:

»
Hir

4]

u.
a=I

Thus for example, E_ x .25 for a = l0.
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The computations required by this method are of the simplest
sort from almost any calculational point of view, and the yield is

1/2 E_ per random number used.

_b. i

TEST
2
Roﬁa—*T

ros —

¥ =17 - Rl

=R or
l Yy = smaller ofnland R2

2 =1+ y(asl)

TEST
RBz (a=z+1) < a

oo

let x =g

With probability TE'I’ y 18 chosen uniformly; with probability
1~ % - :ﬁl s ¥ is chosen from the p.d.f. 2(1-y). Weighting the
two p.d.f.s with these probabilities gives

gly) = ;}% 2(1-y) + Z%I

- 2 (::Izz)



Sincs z=1

h(z)dz = g(21)dy

2 [a = (a-1) 222
n@)-i L

- -522-— (a=z+l)
2 -

h(z) is a straight lins.

4)
oy

| Q

The probability in the first box was chosen so that
h(l) _ h(a)
?TI'} Ta)
Because f(x) is convex in the interval of interest, this choice maximizes
the efficiency E‘ of this second method where the auxilliary p.d.f. is a
straight line segment.
; £(z)
We now chnoae(from h(z) and test whether R < T whers K is the
£(2

maximum value of =" We have

2
£(1 1l 2 -1
R R Y i
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Hence the test is:

A < £(z) a
- Bz  3z(a-z*1)

and r,b-%._

a~=1

The computations are again simpls. In general Eb is about twice Ea‘

ce In this case, h(z) is a step function.

.___1-—-_1:;1(})

Find smallest 1 (a choice dictated by

such that efficiency)
. st
=l
Find J such that (discrete uniform j)
J< H.li <j+l

N

Let z = 23(10112)

z<a 7 (needed only if J = 1 - 1)




The probability of picking a given value of x is

E, . £(x) = (prob. of picking j) (prob. of picking 3)

1
Thersfore Ec - T

(prob. of accepting 3)

or roughly 1n2.

de In this method, s is picked out of

instead of

h(z) = 2—]3

as in method 6.

h(s) -;—13;,[ (-3

ZJ <2< 23’1

2‘1 <z < 2‘1’1



Find smallest i

such that
i

n§2

=
Find J such that

JSRi< ol

TEST
R, <1/3

.

y = min (Ry,R)) no
or y- R3

7= |RyRy|

L

2 =23 (1ay) |

l

TEST

z<a

[ oo

Jes

TEST
z I+l
Rgz (3-5) =2

l no

yes
let x = 2




Similarly as in ¢,
J+1
B, f(x) o2, 2v (3-3%) =2
d I 3023:: -23 3(3'%)

!
1T

e. In this method, x is picked from f(x) with probability p and g(x)

with probability 1 = p.

.

let 2 =1+ Rl(a.-l)

Yes

lJat x = 3 letx-il

- 38 -



The probability of getting a given x is (prob. of 1= yes branch) (prob. that

z = x) + (prob. of lst no branch) (prob. that z = %).

Hence
R 1@ s grh G-
L 1
*m.mf;‘z)
S 1
a a=1) ' x
and

For large a, E, is about 4 E.

B‘, Eb, Bc’ Bd, and B. are shown for a range of & in graph mumber 1.

TEST
1/2(3-1)2 <s
yoo Do |




-ig—.

The probability of getting a given value of x 1s equal to ths probability
of picking that value of x times the probability of accepting it or
=  ~(x1)%/2

- 0'1/2 .8 2/2

= ,76 , which is remarkably high.

Bof(‘)"

A random sign can be attached to x to turn it in to a true Gaussian,

It is possible to pick froam an approximate Caussian p.d.f. by using
the Gentral Limit Thecrem which states, in one of its forms, that the sum
of a large number of independent and identically distributed random variables
with a finite variance is asymtotically normally distributed (Caussian). In
particular, the random varisble defined by the equation

n

- <+
z Z"Ri

i=1
becomes normally distributed with O mean and variance n/3 as n —p @0«
(The variance is defined below, see Part II, P. 2). The exact p.d.f.
and corresponding c.d.f. can be shown %0 be

T -
f(x) - -EX-I. rs(;il T (n + X - 21')“ 1
=
2 T
Pz) = = r(;ﬂ-. (avx-20)"
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The easiest way to obtain a random variable uniformly distributed

from =1 to 1 is to take it equal to 2R~l. The formula for X then becomes

n
XI=2 Zai-n

i=1

Another approximation to a two=sided Gausaian is given by the pedsfs

B.Bx

f(:)'m .B>O

£(x) has mean O and variance n2/332. To pick from this p.d.f., the standard
technique
x = F}(R)

=3 (g-1)

can be used.

Curves for the ped.f.'s for the Gaussian, the sum of 6 Ryy the sum
of 12 Ri’ and the approximate Gaussian are given in graph number 2. Graph
pumber 3 shows the c.d.f.'s of the same distritutions, plotted on cumlative

probability paper. They have all been normalized to have variance 1.
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13. Pick from En(x) - — du 0<x<o
u
Lat the p.d.f. for I be ny" L, o<r<l.

Let Z have the p.d.f. ae >, 0<z<oo, Let X = TZ.
As in section 4, the p.d.f. f(x) of X is given by

1
2(x) = / % (ao.u/y)ny”' ldy

0

1l
- an / g-&:/y f-zdy
0
1
Lctting b g u—

f(x)-an —— G

= an Bn(az)

p 4
P(x) = / £(t)dt
o}

=] «ngk

nel (az)
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x]_/b v .
£ = SpmE 0s=x=

w.x-n’_‘azb.'

Then
1/ 1/a
F(z) = = b-:a.x 0<x<1l
and f£(x) is as given.
1-1
(x) 1x: 1n x O<x<1
()
.1 -
As above, but let a = b,
Then 1
F(x) =x*(1 -1 1n x) 0O<x<1
1.
a n=l
£(x) = X (-1n x) 0O<x<1
a%(a-1)1
n a
Let X =TT R,
i=]
Then



15, f£(x) = & (675 - &™) 0<x< ®

Let Y and 2 have the p.d.f.'s ae o7 and be 02 respectively.
let X =Y + Z.

Then

x
f(x) - / “-a(x-z)be.bzdz
o}
'%(eu-'e'n) 0<x<o®

If a = b, then the process ylelds

2(x) . a2xe™0% 0<x<oo

The sum of n random variables each with the p.d.f. ae 7 1s
similarly shown to have the p.d.f.

n-l

£(x) "-(-—1-)-1—0

-aX o<x<“

1
£(x) = ab Ky(24/abx) = ab 3;'0" 7+ Fayt 0O<x<

Let X = 12
Then f(x) = /‘ '.z/"co.b‘

(a3 +V3)yy gy

ab
£(x) = ab/¢ -Va (Y*dy

= ab KO(Z‘Vabx) 0<x <

Cyge

1 See Watson, Theory cf Bessel Functicns, p. 181.



r(X) - B o) : x < o0
(x+m)
Let X =3
Then oo
£(x) = [ gae 2%3 pe 0%
0
- ab
(l.xﬂ:)2
.
(zm:u)z
if m = b/a.
2(x) = Il-u + b..u - (‘¢b)°'(‘¢b)z

let X = larger of Y and 2

£(x) = ab 1 1
g * {(l.z+b)2 * ("u)f}

smaller of Y and 2
larger of Y and 2

Jet X =

0<x< 0w
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£(x) = b- 2 - 1 1 co
: * {(ax-o-b)z (a.#bx?} =x=

_155%«:!“«12
Let I er of I an

f(X) - (“b).-(ub)x . (m)e-(b-vc)x . (cﬂ)ﬂ-(c.“)x

- 2(a.ot:m:)c"(""b'"")x 0<x<%

Let I = the middle of 3 random variables with the p.d.f.'s as °7,
b.-bz’ and co'“, respectively.

16. £f(x) =

Let Y have the p.d.f. 1/a, O < x < a, and Z the p.d.f. bo'b'.
let X =Y + Z.
Then - x
f(x) - / %b.‘bzd’
0
'%(l-o-bx) 0o<x<a
x
- l. -bz
ry be dz
X~a

2; (O.b(x-.) - '-bu:)

< <
ry a<x o
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17. £(x) I S “l<x<1l

" Vl—xz

It is often useful to pick values from thes random variable
X = cos 'R’ of which this is the podofo The fOllWing t‘cmqn.

is due to von Neumann,

r__‘
'Plcknlandnz

L

2 2
5 4»32 :1

yes | EC.

2 * .2
SRR

T=R

The accepted 31 and 32 can be used to define a point
(x = By, 7 = R)) in the first quadrant. These poimts have a
uniform distribution in the 1/h eircle 0<x<1, 0<y<1 - x%
Therefore the angle defined by n = tan™ I has a uniform distri-
bution between O and n/2. Since twice this angle is uniformly
distributed between O and n, taking X = cos 2n will produce the
desired p.d.f.
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cos 2n = coszn - sinzn

!
1/312 -8

cos n =

The pedefs for Y is also of interest,

E . g(y) = (probability of y) (probability that R, 5\/1-?)

- Vlgyz
g(y) -%- Y15

amdE=r .

{1 ~-a
18. (1) = 511'—— for 0 < a 1.=0, 1, 2, ... (Poisson distribution)



[}
0
[}

let k = O

<o

yai =
li-k’k#l—ok

Y = By T

[

Because R’k <], yk is a monotonically decreasing function of
ke Thersfore the probability that Yy fails the test R < e 2 is
equal to the probability that a random variable

k
X =TT R

J=0

is greater than 2, It was shown in example 1l that this prob-
ability is

k
1-?(."‘)-1-(‘2%
=0
x

Since this probability decreases by an amount %.- o " after every
k -
test, the probability that i = k is just %r e .

The average number of Rk used in each choice is a + 1,



19. The following joint p.d.f.'s will be obtained:

1 1-1 1 05{;}“'1
- - 3
x r %—?, (1-:) _(1:2

* 1-1,2’000

The following p.d.f. for i alone:

1l 1
Ir ° W todhde.
Also the following p.d.f.'st xax, e - o’,

b
::-Ixcoshx, ?:T(sinhl-sinhy), a—iroz, 05{7}51
3

ex sinh x, e(cosh 1 - cosh y)

Start with 9.0 and R'l and iterate as follows.

It Ri—l < Ri’ increase the i index by one and test again. As
soon as the inequality fails, take X = Ri-l’ I=- 19 = Ro,
and I = i. Schematically,

Pickaomdal_J

Yes no

N
Choose Rh = ai-l

I =R

‘i*l-—)i

Z'RO

Ie=i
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Let the probability of making at least 1 tests be P:L'

Then P,, = P;. (probability that R; ; <R,). Since R,
1s the largest of i random mmbers, it has the p.d.f. iR 17T,

Therefors ths probability that Ri-l < Ri is Rii. The probability

of the test succeeding is:

(o]
Py
So Pie1 " 3T
But P, = 1.
Then P, = 1
1 IT

The Joint p.def. for I and X is product of the probability
of making i tests (1/4!) and the probability of getting a given x on
the 132 test (1x'"1) and the probability of them failing this 122

test (x); 80
i

£x,1) = trimy

The Joint p.d.f.'s for I and Y, and I and Z are similarly

g(y,i) = lB-A—

h(z,1) = 1_(1_5-_)_1_'1 - (iflz(l-;zi
- S%.}‘# - (l-lzi

obtained by:
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The marginal p.d.f. for i can be obtained by integrating any of

the above. For example:

1
xi
e [
0

The marginal p.d.f.'s for X, Y, and Z can be obtained by

suming the respective joint p.d.f.'s over i; so

£(x) = i’-a?m

i=1
- xe* 0<x<1
s(y)-z%ﬁ
1-
-e -0 0<sy<1

2 -1 i
h(z) = Z (1;) e
ie1

- ] 05351
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By accepting x, ¥y, or z only when i is odd the following

p.d.f.'s are obtained:
x?.i
E. f(x) = X W
0

= x cosh x 0<x<1

1l
and E-/xcosh'xdx

0
1

=19

E-z(y)-f%zi-;:l
> -

= sinph 1 - sinh y 0<y<1l
1
E-f(ainhl-sinh y)dy

0
= sinh 1 + 1 « cosh 1

E . h(z)



By accepting only even i's one obtains:

29 L2311

B.f(x) »=x I
0

= x sinh x o:xﬁl.

1
E-[xsinhx

- g-l

2, .42
BE . g(y) 'Z—Qﬁr—
o0
'Zl-:'ﬁi-
o [ ]
= cosh 1l ~cosh 7 0<y<1l

Bel/e
oc'(-1"(1-2):"
'I'Z—-Ln—
(o]

=1 - o le? 0<z<1l

E=1l/e



If the test Ri-l < Ri is replaced by the test P‘i—l > Ri’ then

it is easy to see that the only change in the result is to replace
X by 1=x, ¥y by 1-y, and z by l~z, and the following p.d.f.'s

obtained:
(1_ i l - (1- )i i'l i
T
e(1-x)e”%, e(l - &)

s (1-x)cosh(l~x), o3y [sinh 1 - sinb(ley)], Sipe™

o(l-x)sinh(l-x), ° [cosh 1= cosh(l—y)]

20, The rejection technique illustrated in the last example was
suggested by Johm von Neumann [1]. He also pointed out that the
technique for picking out of

% 0<s<1

h(z) = Q_:I e
with an efficiency of 25’: could be used to pick out of
£(x) = e x 0<x<oo

by simply taking x = z + j wvhere j is the number of times the test
has failed. The probability that a trial will be rejscted is e~t
and since

e Lix = e'l o'”ldx
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we ars choosing from succeeding intervals with exactly the right

probability. o 1
The upecte_dm.mber o:'l@l.1 in a single trial is 1 + o, so the

rm.mberotad for each x selected is about [

(1+o)°—:I=6

Ao, LA o<{f}=1
i=1,2, ...
I'r]ﬁ_n 1-1’2’000
= 1n(l-y) 0<y<l
1 1+ x
1l3 g5z, o721 1o X 0o<{3r=<1 | ‘

3.259 yX , -1.629 In(1~5°)  0=<{T}=1

Start with an Ro and B.l and iterats as follows., If Ri < 9.0,
increase the index by one and test again. As soon as the inequality

fails, take X = Ro, I=i,andY = R.e Schematically:

— .

TEST
By SRy
Yo mno
y
Choose R let. X = Ro

pR )
1+l I=1

I I-Ri
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The joint p.d.f. for X and I is

=1 - x)

f(xli) -x

The probability of getting a given x times the probability
of passing the first 1 - 1 tests times the probability of failing
the 15 test. The marginal p.d.f. of x has not been changed by
the processing and is still uniform.

The marginal p.d.f. for i is

1
[ @bty
0
th i-1
Since the joint p.d.f. for Ro and T at the i-— test is Ro » the

probability of making the 13_11 test is

1
1=1 1
/ Ry” T =3
0
The joint p.d.f. for Y and I is given by (prob. of making 13t

test) . (prob. of getting a given y) . (prob. that Ry < ¥).

-%.1.';#-17.1.

i

The marginal p.defe. of Y is

1
g(y) = f >

T
t

I
oo
Z 1-1,,
0
o0
f’dt Z gi-1
A
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v
dt
b
® = ln(i-y)

If only the odd i are accsepted,

O o0
E . 2(x) -qu -Zxai’l
>=
. %_(-Dizi

S
Tz O_<_x_<_1
in

Ew= 2

2 2141
E. gy Z
]
00 N4
-Z / 24y
)

Y oo
- f 221a¢

[Z
- dt
5 1-t



If only the even i are accepted,

B . r(x) -f xz""‘l -izﬁ
0

.1 i(--:.)“’lxi

X

i

Eel-1ln2

21

=

o0 b 4
-Z [ t2=1gy
v .
. itﬁ"]‘d‘b
1

E.gly)=

N

Ty

—-z-dt
1-t

0

= - } In(1-y?)

0<y<1l

If the inequality is changed to R:l > Ro, the p.d.f.'s become:

x(1-x)i-1, %(1-7)1
1 2
101"-‘3 ?:; 3 0721 1n (? - l)

3.259 2%, <1.629 1n y(2-y)

0 5{;}5 1

1-1,2,oov
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1
1.216 = 1n (1+2), 5.63% [1 = 3 1n (1)) 0<x<1
Number 21 can be modified slightly by making the comparison

.
Lnmr®

Schematically:

Pick R, and""al' '
1 =1

noi-l
Given Ro, the probability of passing 1 - 1 tests is
Since RO is initially uniformly distributed this is just the Joint
Pedefe of Ro and i entering the 12 test. The prooability eof

£ailing the 1] test 1:1-&1-% 80
i-1
£(x,4) = T (1 - ﬁr x)

xi.-l xi

I S £ o

The marginal p.d.f. for X is uniform,
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The pedef. for I is

1
1 1 2441
£(x,1)dx = = = -
[ ’ 12 ()2 12(1+1)°

The joint p.d.f. for Y and I is

i
i s for 72 7y
g(y,1) j]'. 1 .
It w7

The marginal p.d.f. for Y seems too difficult to bother with.
If only the odd values of i are accepted:

a0 N 51
E . 2(x) 'Z-‘-.-%:),f—
0

(e N



‘If only the even values ars accepted:

Bof(x)-l-ln'-(xl‘"ﬂ

B = .1775

22. Picking from the Klein-Nishina Scattering Formula
It can be shoun that if a y ray of energy a (in xz) is
traveling in a cloud of free slectrons, then it has a probability
g(x,a)dxdl of having a collision in the distance dl and emerging
from this collision with an esnergy o' such that

HiR

a a
€< a! <=¢

2
nna
co (m29-1+x¢§)% l1<x<l+2

M

(
g(x,a)dx = {
\

0 x<l,l+2c0<x

where cos 8 = 1/a = x/a + 1 = cosine of angle of scattering.

classical radius of alsctron

2,81833 2 10™23 en
«249536 x 1070 o2
= mumber of slectrons per cc

2 =] Oim

= xa = energy of y ray afier collision.
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1+2a
If o(a) = / g{e,x)dx then g-t(x-“l is the so-called Compton
1

scattering cross section and is tabulated in R-170 [2] , Tables 5
and 6. The probability that the y ray will have any kind of
scattering collision in the distance dl is then o(a)dl. g(a,x)
can now be written in the form:

g{a,x) = no(a)f(e,x)

where £(a,x) -é (cosze -l+x+ %-)/x(a.)
4 1+2a
and K(a) = [ (cos®@ =1+ x + %-) %

f(c,x) is then the p.d.f. for the energy ratio x of a y ray which
enters collison with energy «. The normalizing factor, K(a), is
shown in Graph L.

Graphs and Tables of the equation
Re= f(a,x)dx

can also be found in R-170.%

Empirical fits to these functions could be made, but it is
undesirable to have to fit a two variable function unless absolutely
necessary.

Several exact methods for picking out of the Klein Nishina p.d.f.
will now be discussed. This is partly pedagogy and partly because
the method used may depend on the particular section being picked
from or the available machine.

1  Actually cos © and 1/a' as a function of R and o are tabulated,
not x.
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First, techniques in which x is drawn from a p.d.f. n(x)
and then accepted if R is < T(x) will be considered. This implies

that B . £{a,x) = m(x)T(x).

a. Lat m(x)-%z l<x<1l+2a.

(x) = 3'2- (cosze «lex+ -i-)
x

It is clear that the expression to the right of the proportion
2
sign is < 2, sincoSﬁ’ﬁ;g—-—l)-go a.nd%(z*%) < 2 in the region

1_<_x_<_102¢.

So if

2

T(x)-ﬁ(eoa@-l*x*é)

the inequality O < T(x) < 1 is satisfied. The efficiency is

z, - m(x)‘i(xz

b. Leat m(z)'mj('m 1§x_<_1+2a

T(x) = zl:-‘(cosze -l+x+ %)

a)

Eb'z:%r(ma'

1 See example 1l for technique of picking out of 1/%1n(1+2a)
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c. Let m(x)--l—:%xlz- l<sx<l+2a

T(x) = (com®@ =1+ x + i-)/(l + 2+ I%EE)

o _(1+20)% X(a)
© (20)[1 + (1020)%]

ThatO:'r(x)flcanbeveri:iedbynotmgthltxtéiaa

monotonically incrsasing function in the region 1 < x and that
cosze = 1 has a maximum value of 0. Therefore the function
2 1 1 1

(cose-1+xoi).<_x+-£51¢2a-rmir1§x_<_l+2a.

d. It is also possible to break up f(x,a) into the sum of

two p.d.f.'s; for example:

‘ 2a+]
el B 2 %57

=P

no TEST TEST no

Ry < h(%- - ?) Ry < %-(cosze*%)

yes yes

As always.

2a+1 1 1_1 8 2a+1 1 2.1
Bpf0) " g G - ) gy - oy gleos eg)

2041 2,1 1 1 2
= o = (== - + S08 9)
2a+y * T 'X ;‘ x‘j 22

I (2::1.) ZK‘(;a)

The efficiencies E, through E; are shown in graph number 5.

. o~
- - -
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23. Pick from elastic n-d scattering
See Figure 2 (p. 67) for schematic which gives the
simplest rejection technique for picking an angle of
scattar out of the n-d elastic scattering cross sec-
tion. It has been obtained by carsful fitting to the
best theorstical and experimantal data [3available. The
efficiency of the technique is of course a function

oraandism]m. ‘rhisisshovninmphhmberé.

The angle of scatter y in the lab system and the new energy
a! are obtained as follows:

at -§\J50hcoa;
1+2cosy

co -r==é
Sonr 5+l cosy

2L, Appraoximate inelastic n=d scattering
The energy spectrum of inelastically scattered neutrons is

not very well known. A reasonable approximation is to subtract the .
binding energy of the deuteron from the incident neutron and then
assume that the two nsutrons and proton coming off shars the remain-
ing energy, each particle having a uniform energy from O %o the maxi-
mm available. Let a, d, a', a' be the squars root of the incident
energy in lab, incident energy in C. of M., final energy in C. of M.,

and final energy in lab, respectively.
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To pick the new enargy of the first neutron

- 2
36

!l

2

g!c - 3-1(32 - 2.18) 2.18 = binding energy of deuteron

cos y = R, =1 assumes scattering is isotropic in C. of M,

a'=4%—¢5'2*3‘5—321c08;

The energy of ths second neutron can now be picked from the
anergy that is left by the first neutron. For the purpose of calcu-
lating expected values this is not necessary——the first neutron can
be given a weight of 2 and the second neutron ignored--even though
this is physical nonsense.

25. Approximate general inelastic scattsring

A useful approximation to inelastic scattering of neutrons is
to assume that the neutron loses at least a minimum amount of energy 8
to the excited mucleus and that its energyis uniformly distributed
between 0 and the maxirmm possible.

If a, a, a', a'! are the square roots of the incident energy
(1ab), incident energy (C. of M.), f£inal energy (C. of M.), and
final energy (lab) respectively thenm:

E-I%-Ic
E'Z-Rl(iz-a)

vwhere A is thes atomic weight.
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The angle of scattering (¥) in the C. of M. is to be picked
out of its distribution. For want of better information this is

usually taken as isotropic.

coa?~2ﬁ2-l

2 -
a! .\{ ..___z(;:l) T TI-ZG’G' cos v

a - -
&+ t

Irtoicesy
al

cos ¢y *

y, of course, is the angle of scattering in the lab system.

Fit to experimental data of n-copper scattering (graph number 7).
Picking from another empirical p.d.f., the angular scattering
of 14 MEV neutrons on copper, is now discussed, If x = the cosine

of angle of scatter, then this p.d.f. can be represented in the form

£(x) = hi(x)-“i(l"‘) X IxXIxa



vhere the hl(x) satisfy the inequality

0 < hy(x) < ¥ vhen x, < x < X, 5

The parameters are as follows:
x, = 1
xl = ,98

= .93
x3=.71

x, 3,1 (The scattering for x < = .1 is essentially zeroc.)

‘1 = 32 = ‘3 = 16.]_46952
I.A= 4452099C

By (x) = 6826.237250x% =13411.70412x +6603.930212
bz(x) 2 4e271122975x +12.19273318

hy(x) = 130921.6031 -813913.1074x +2023593.429x° ~25133R.773
$1558716.733x> =385960.6254%

b, (x) = 1.05474959 =1.3333C155x +2.12496606x2 =2.63973279C
+ T294T297X* +2.58277190%°

M = 18.5

M, = 16.4

M, = 25.8

HL 2 1.25

A aet of Py can be defined by the equation

Py = f f(x)ax

Xy



Then p; = p;_; is the probability that the event (xi <x 3‘1-1) ocours.

P, = .29096398
P, = «69549204
' Py = 95T

If nov in addition a set of b,'s is defined by

1

b = 1-e"1(%17%) = 2759820108
by = 1-a"20%7%) = 5539600260
by = 1¢"3(57%) = omazas
b, = 1~ 5) = on3180497

Then the following schematic indicates hov to pick from f(x).

BSn oy e R .

. [ - |
1a(1-b,R,) Lo(-bRy) 1a(1-b,R,) La(-b.R))

) e =

4
MRS by (r)| RS () MRS ny(y) 13,7C b, (7)
po~] IES pa~ s
¥ v

letx=y
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The method can be verified as follews. The probability of going
down the i'th branch is pi = Piye As R? varies from O to 1, ¥

varies from xi-l to x.. The probability of acceptance in any

i
interval is proportional to hi(x)o-‘i(l'x) and the p, have been

chosen to make everything properly normalized.
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Monts Carlo Method, U. S. Departaent of Commerce, National Bureau
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PART II

EVALUATING INTEGRALS
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II. EVALUATING INTEGRALS

l. Intreduction

The simplest application of Monte Carlo is the evaluation of integrals.
While in actual practice it is rarely efficient to use Monmte Carlo unless
the integral is rather highly multi-dimensional, this chapter is restricted
to one= or two-dimensional integrals. The generalizations to more dimen-
sions, however, are obviotia. In fact most of the discussion is unchanged
if the variables of integration (x,y) are each considered to represent
multidimensional spaces. The rare instances in which this interpretation
is not legitimate will be clear from the context.

The application to integration and, in fact, most applications of
Monte Carlc depend on the following two theorems which will be stated

without proof.

Theorem I (The Strong Law of Large Numbersll

If a sequence of N random variables x, to Xy are picked from the
pedef. £(x) and a random variable ’iN defined by the equation

N
2y = § D alx) , )
1l
and if the integral
o0
z = / z(x)f(x)dx (2)

1 Ses Doob, Stochastic Processes,
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exists in the ordinary sense, 2 will, almost always, approach 3 as a limit

N
as N apnroaches co,

The integral (2) is called the expected valuel of the function
z(x), and ’z‘N is called an estimate of z. I.fqzz, the expected value of
z2(x) , also exists, an estimate can be made about the amount that QN
deviates from z for large N. Denote the variance of z(x) by either o®
or V; define it by ths equation

o aV = (z - 3)°

- f(z - Z)Zf(x)dx
- / 22£(x)dx - 23 / af(x)dx + 3° / £(x)dx

2

22 - 232

+ 3z

22 - 32 | (3)

z
and then apply Theorem II.

Theorem II (The Central Limit 'Z'hem.-sn)2

For large N the probebility that the event z - § <2 < z + § occurs
is asymptotically independent of the exact nature of z(x) or f£(x) but depends

only on N and 02. In fact,

5
",
Prob. {25 Z - a} -\ & o™ /2ux -
- o0 1

+ terms of order ﬁ

1l Most readers will be familiar with the fact that the "expected value”
may be very unexpsctad. For example in the coin tossing example of Part

I the ;xpectad value of C wa3 1/2 though C can %take on only the values
0 and 1.

2 Almost any book on statistics discusses this theorsm, Cramer, Mathamatical
Methods of 3tatistics, is especially full and interssting on this theorem and
s 7ariarts.
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The probability that the deviation of 2 from z will exceed + W 4N is

given in the following abbreviated table of Y2 /x =\ 2
A Probability
675 5000
1.0000 <3173
2,0000 +0LS5
3.0000 .0027
14,0000 .0001

It can be seen from the above tabls that deviations greater than

+ /YN will be frequent, deviations greater than + 20/ YN not uncommon,
and deviations greater than + 30/ YN so uncommon that if the table a.ppliasl
the possibility that this last event may occur can usually be ignored.
o/ W is called the standard deviation (s.d.) of the estimate 2.

The reason that sampling is useful in evaluating multiple thraia of
& high order is that neither of the theorems depend on the dimensionality of
the integral. The numher of points required to evaluate a multidimensional
integral to a fixed level of accuracy depends only on o, or o/z if a fixed
percent accuracy is desired, once there are enough so that thes Central Limit
Theorem is reliable. While it is true that in this perverse world o or o/z
seems to increase with the dimsmsionality, there is no reason in principle why
this should be so., By contrast, in almost all standard techniques the number

of points required to evaluate an integral go up in geometrical progression

1l As discussed in Appendix II, the table is almost consistently optimistic
for the ped.f.'s and N's actually used in practice. In fact, its "sweet bye
and bye" form does not always admit too confident an application. It is
therefore to be considered as suggestive and not categorical.



with its dimensionality. In part this undoubtedly is due to a defsst in
the theory of integration in many dd.mmaions,l but partially it seems to be
unavoidable. This exponential increase almost never occurs if the inte=-
gration is done by Monts Carlo. The other occasional advantage of Monte
Carlo lies in that it may be cheaper to compute points by Monte Carlo than
in the standard ways. This shows up most sharply in trying %o solve certain
Orsen's function types of prob].am.2 On the whols, though, it must be
admitted that Monte Carlo has not shown up very well in competition with
standard techniques, when the standard techniques were a%t all r easorablas.
I¢ has been used most successfully where the standard numerical techniques
completely fail., In this sense it is a method of last resort.

The results of Theorem IT depend on N being large snough and the variancs
being known. Of course, it is rare that the variance should be known and
Z unknown. The question "What is large enocugh?" is discussed in Appendix II.

One Wy to calculate ces L s(xl,..., ) esedx_ would be o evaluate
z at the poinu obtained by di¥iding-each x ce info M intervals and
taking the midpoints of these inumls. Ir instead ths function z(x.l,... X, )

Wware expanded in the form kgl 1I1¢ik(xi) then the corresponding rumerical

integration would only requirs MnKk points. Routine methods exist for making
such axpansions, but if the function z(x,,...,x.) is in any vay rough, a very
large X may be needed toc make the axpansion accurats snocugh. In general, in

any definite problsm special techniques can be used to rsduce the number of
points to less than M2 tut in a largs class of problems not enocugh lass to
nake the classical numerical intsgration competitive with the numbsr of points
required by Monts Carlo (see aquation (8) ). Howaver, it also sesms to be true
in the past that Monta Carlo has been most useful in evaluating integrals that
have arisen out of probabilistic situations. The author knows of no ssrious

nop—probahil:.:tic integrals evaluated by Monte Carlc. It is hard to Say wnether
this is coincidental or symptomatic.

2 Jo H. Curtiss, "Comparison of Bfficiency of Monta Carlo Methods with that
of Classical Methcds for Linsar Computation Problems," Symposium on Monte
Carlo Msthods, Jonn wWiley and Sons, 1956.
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The va.rianccl can be estimated by

bo gy 2219 (5)
where of cowrse A X
.2 bl % Z'z(xi)
1 (6)
N
2= % Z'(xi)

In general, whenever it is desirable to estimate values oﬁ foz;mlao in
which ?and % involved, the expected value can be replaced by 52 and 3 re-
spectively, While the estimate will almost always be biased, the amount of
the bias is usually proportional to % and can be ignored if N is reasonably
large.

_ The estimate of V in equation (5) is often unreliable unless N is very
large, If 6‘ is not known to be reliabls, the computer may be able, by ex=-
ploiting special properties of the problem, to obtain an upper bound for V

or (7-3‘). In other cases the computer may beables to depend on experiernce,
intuition, or just plain faith for ids belief in the accuracy of the answer,
This point bears a lot of discussion, some of which can be found in Appendix II.

The estimte in equation (6) is useful if only because it may give
negative information, If the estimated 9 is largsr than the computer can
tolerzte, this information, at least is usually reliable and the computer must

gither ingrease the number of samples or changs the sampling techrnique.

1 k 3

Wnile the expegted values of z° and 2 are ;! and 2 respectively, the
expected vaius of (zz -2 ) is not V but. Nl Ve This occurs because the

expectsd value of 22 is é? + (1= l)iz.- It is customary to prsvent a bias
fiom occurring in the estimate of ¥ ¥y mltiplying the intuitive estimate by
—-. Unfortunately, even if this is dons the expected value of \V will not
e~ o but will also be blased by terms of the order of n° The bias howsver,
is practically never significant,
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2., The Economics of Sampling

The error in the estimate of z is measured by o/ #N. Thers ars two
ways t© maks this error smalle~to incrsase N or to change the sampling
technique to make o small. The sxtent to which each of thase altarnatives
should be used depends on the relative cost of each for the problam to be
done. Before going into a description of the sampling techniques available
for reducing o, it is worthwhile to consider briefly how much of the work
should be allocated to decresase o and how much into maiking N large.
It is assumed, for simplicity, in what follows that thes computer is in-
terested in obtaining the greatest accuracy possible at a fixsd cost or=-what
is in this cortaxt much the same thinge-~the minimm cost for a fixed accuracy;
the truth will generally lie betwesn these extremss, tut either of them
&ffords a basis for the analysis. The desired accuracy is set by requiring
that o/ fN be squal to a preassigned ¢.
The cost of doing a problem can be divided into three parts, ths cost of:
a. designing the sampling including the cost of extra analysis
if fancy methods ars to be used.

b. programming, coding, and code checking.l This cost is usually
determined by the sampling cesign. It is listed separately because
even though it can bDe very important, it is often ignored. For

small probiems it may be the largest part of the cost.

1 Programming refers to the details of putting the problem into a form
that is suitable for machine computaticn. Coding refars to the semiclarical
Job of translating these details into the instructions that the machine will
follow and to the recording of these instructions cn a medium which the
machine can rsad. Code checking is the perilous jicb of finding all thae
mistakes. Anything the computer can do to 3impl 4y these time consuming
3teps may result in a large reduction in the cost cf doing the proolem.
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c. the computing machine on which the problem is done. Except
£for the time used for code checking and therefore already counted
in (b), this cost isuwsually considered to be proportional to N.
Since the proportionality constant will vary with different
sampling methods it is also a function of (a).
If the cost of (a) and (b) is dencted by €y, the cost of (e¢) by C,N,
and the total cost by C then
C = Cy + Cp(C)N o
Cl and N are under the control of the computer, but it is usually impossible
to predict in advance, even approximately, the form of a(cl). The analysis
from this point on therefore takes on a certain fictional character.

The error is

o(C,)
[ T (8)
Solving equation (8) for N and substituting in (7),
Cza2
C= Cl + —52— (9)
oC 2 &
dC 2 do g 2
a1 +2 + -0 (20)
T, L Xy 2T
dC,
In most cases can be ignored and (10) becomes
E'l' &
2
do _ _ ¢ (11)
L T

By solving equation (11) for Cy, the a(Cl) of the sampling plan and
therefore the sampling plan itself is determined. N is also determined



—

since it is equal to 0'2/82. The lsss said about how sampling plans ars
chosen in actual practice the better.

The only place in this report where the coat will be brought in
explicitly will be in the discussion of the device of Russian Rouletts and
Splitting where it will be shown that a modification of equation (10)
can be used to determine the sampling scheme. Even though it is not menticned
explicitly the computer must always keep costs at least roughly in mind

vwhen designing or svaluating sampling schemes.



3. Msthods of Sampling

The sampling techniques most often used in Monte Carlo problems are
called:

1, Straightforward Sampling

2. Importance Sampling

3, Systematic Sampling

4. Stratified Sampling (Quota Sampling)

S. Use of Expected Values

6. Correlation

7. Russian Roulette and Splitting

In order to introduce and compare the diffarent techniques, a brief
discussion of how each one would be used by itself in connection with &
typical problem is given in Sections L to 10. After the general discussion
there is a more detailed explanation of each technique in Secticns 13 to 19,
It is of course possible, and often advisable, to use two ar more of the
techniques simultaneously.

The problem that will be used to illustrate the various techniques is
to estimate the integral

z= //z(x,y)f(x,y)dxdy (12)

A
where £(x,7) is a p.d.f.l The area A over which the integration is done, is

divided into J nutually exclusive arsas, Al to AJ. It is the different chare

acteristics of the integrand in thsse megions which will be exploited in the
methods which follow.

1l This implies only that f(x,y) >0 and that fff(x,y)dxdy =1,
A



The following quantities are defined for each value of j:

the probability of A j

py = [/ tix,7)exey
4

probability density of (x,y) given AJ
f(x,y)/pj if (x,y) is in iy

rj(x,y) - .
o ir (x,y) 1s not in Aj

conditional expected value of z given AJ
I, = [[a(z,1)1(x, )axdy
A

- [[ 2z tx Dy [f tx,7)axay
A A

J J
conditional expected square

I’g’ . A/ [3%(x,7)2(x, 7)cxdy

- [/ Pt viaxay/ [ 20z, 7)exdy
A A

J J
conditional variance
2 T _ =2
Ty
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(13)

(14)

(15)

(16)

(17)

Py is the probability that a point (x,y), picked at random cut of the

Pedefe £(x,¥7), will be in the region AJ; rj (xy¥) is a properly normalized

P.def.; and f(x,y) is equal to 3 pjfj(x,y). EJ is the average value of



z(x,y) in A j° The expected value of z{x,y) over A is the expected value

of the 3.

2= =) ' (18)
Similarly

2 - -z: -> o5 (19)
Finally ag measures the fluctuation of the random variable 3(z,y) gdven

that (x,y) is in Aj‘ It is shown in Section 4 (equation 2L) that the
variance of z(x,y) is the weighted sum of the values of these conditional
varinces and a variance due to ths fluctuation of 53 from one j to another.

The same formulation can be used totreat a slightly more general problem
than the simple evaluation of an integral. For example, consider the eval-
uation of the expected value of a random variable W that is generataed by the
following process:

a. Let ;:”j be the probability of a j-tﬂ event occurring.

b. If the :)3-kl event occurs let the p.d.f. for (x,y) be gj(x,y)

and let ¥ = 'J(x,y)

J
¥ - 321 Py //vj(x.y)sj(x,y)dxdy (20)

Pi¥y

Ohg”

dll
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where the obvious definitions for ¥ 4 and 'i apply. All

the techniques to be described can be used as easily to
evaluate a ¥, defined by &quation (20), as to evaluate a

3, defined by muation (12). In fact, some of the techniques
ares unnecessarily complicated for the simple integral, dut
are useful for the more general problem, particularly if the

P J's are defined implicitly instead of explicitly.
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L. Straightforward Sampling (1)

This is the sampling which was already discussed in section 1. N
samples are picked from the p.d.f. £(x,y) and an estimate of z is defined

by X
2 -3 Z"‘i”’a) (21)

The variance of the estimate is
v, = }[z(x,y) - E]z - ;1; (3 - 32) (22)

It can be written

v, - ;[ [/t - 3] f(x,y)dxd{l (23)
- %,[ij JJE - 33 fj(x,y)dxdy]

.}]i jpj jf@z -?;;) + (?j'- 5)12 fj(x,y)dxd,;J

- %Epjcg + ij(;j - E)ﬂ
J

Since
f/ (z - zd)zfj(x.y)dxdy - c§
2 [ (a - )@, - Dey(x,7)exdy = 0
I/ Gy - Dz nexy = G, - D
Therefors

v, - gi[ci . (3 - 2)]"’ (2k)

i)



S. Importance Sampling (4)

Another method of evaluating 3 by sampling would be to:

(a) pick a j out of a set of probabiiitiea p-’ instead of p 3
(b) once j is picked, pick an (x,y) out of fJ(x,y)

(¢) with this (x,y) evaluate the ﬁsnction

z#(x,y) = zg(:.y) - -% z(x,y)
P
The p3 can be chosen completely arbitrarily except for ths usual

conditions:

oipsif_l (25)

2 7l
J
together with the condition that

P = 0 (unless Py = 0)

The first two conditions guarantee that the p-3 shall be a ast of
probabilities, the last one that p J/p-’ is never infinite.
Despite the arbityariness of Pt the expected value of z#(x,y) is

easily seen to be 3:

¥ (x,7) = Z Py jfzg(xﬂ)fj(x.y)dxdy (26)
. z pgﬂp—;l 2(x,7)£,(x,7)dxdy

'ij /fz(x,y)fj(x.y)dxdv

= [[3(x7)2(x,7)dxdy
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However, lﬂ(x,y‘)iz is not equal to :z
[ =) vt [[o8 2,00 (x,)emey (27)

2
- Z /j;- zz(x,r)fj(x,y)dxdy
J

So v, = %r[zﬁz(x,y) - 22] - (28)

42+

Theré ares, therafore, an infinite number of sampling schemes here
that can be used to estimate z — each with a different variance. The
computer would presumably like tc use a set of p-g's that minimizes this
variance. To minimize V2 it is sufficient to minimize z*z(x,y). The
term, 52, is not affected by changing the pj. Of course the minimizing
on p’ must be done subject to the conditions of equatdon (25).

As shown in Appendix III, this is equivalent to finding the values

of pg that minimize
755

2y

for a suitable \ to be determined latar.
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The unique minimizing set is given by
1 3
= =n. \z (29)
5K ( 3

To make the summation of the p3 equal to one, it is necessary to take

- -2
w-3 5\ ()
If the sampling is done with this optimum set of ;:_-3'3, ths variance
becomes
“ 2 ]
1 ) =2
T, R &pj 3| - 2 | (31)
-5 -3

2
A I [Z”a \F—ﬂ (32)

The variance is reduced by the variance of a random variable which has a
probability p j of taking on the value \{z—_g.

It i3 slightly misleading to call sampling with the pa\ Importancs
Sampling. The importance of any region in contributing to the answer is,
in a sense, measursd by leEJI tut the sampling should be done by a set

of probabilities propertional to p s ;g. However .273 - 5§ + c'§ , 30 12 ci



"

pom—

1s small comared to i, \H:ii 4 In fact in certain optimm sttustions
the quantity corresponding to & ) is zero; in which case the sampling
probabilities should be taken exactly proportional to the importance of
the various regions. In any case it is usually easier for the computer to
conjure up estimates of 23 tmﬁ.

If the ij are all positive and the py are taken proportional to 53 then

P2 '
pg-J;—i ‘ (33)

-
1= 25 =2
V,=*%(z )p -z (34)
RSN

and Vy =V, = %‘, (35)
- [z 21 - :5-)} (36)
%3

It is clear that sampling proportional to IZJ] may be poor if any

of the terms p az/ 3 z2.] is large. The computsr can protect himself against
373 ¢ 74

3
this possibility if whenever his estimate of 53 is very small he replaces



it with a larger number in the calculatiocn of pg. Exactly how far the
computer should go in this direction is strongly dependent on the problem
that is being done.

The problsm of estimating z?. or ;3 is orucial if importance sampling
is to be done, Intuition, approximate calculations, sxperiments, or
prévioua Monte Carlo calculations can be used to get information about
;3 and ij. In most problems it is easy for the computer to get some idea
of the relative importance of differsnt regions. When it is necessary though,
it is worthwhile to go to some effort %o get reasonable éstimtes of ?j.
or 'z'J for, as shown in Appendix II, there are real disasters possible if

the assumed importancs functions are very badly chosen,
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6. Systematic Samoling (4)

If it has been decided in advance how large N is to be and the pj's
are known explicitly, then instead of choosing a random j for each sample,
the expected number of samples can be assigned to each region.

Denoting these expected numbers by n y then

ﬁj = pyN ‘ (37

The estimate of z is

;j _ =
P
2.y g.'l &(xﬁ,%) (36)
=0
th th

whax; (xi:)’yij) is the i—— sample value picked in the j= regicn and

-]_i- “(xij’yij) is an estimate of 'z'J.‘

nJ -
The variance is given by

Vy = (‘4‘3 - E)2 (39)

Z can be written

; pj ;-
- -;: —— Z

- \

j- nj - j (’40 V'
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Substituting equations (38) and (LO) into (39),

Lo, ¢ \ (1)
v3 -@gi Zx{s(xid:yij) b ;J]}

J 2n 2
-Z o i l&(xij,yu) - ;J]

J=17]) i=1
+ cross product terms which drop out
when the averaging is done.

o

=

J=17] i=1
J 262
e~
1 B
J
1 2 17
WL P77 YO
J=1
[ 2
and v - V3 - NI_JX;’J(ZJ - s)] (L2)

The variance is reduced by the variance of the average values of the
different j regions, one of the tarms of equationl. Whether cr not the
gain in doing systematic sampling is large will depend on the amount of
this variance, but as it rarely involves any extra work, if the p:j ars
alrsady known, it is almost always desirablas.

. -
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7. Stratified Sampling (Quota Sampling) (4)

As in Systematic Sampling, each region is assigned a definite number
of samples instead of a random amount. However, instead of just %aking
this number equal to p ;]N’ it is chosen to minimize the variance of the
estimate. In this respect Btratified Sampling is similar to Dmportance
8ampling.

Ir m samples are taken in each region, then the estimate of z

is given by 3
P
’i‘h " Z % g z(xij,yij) (L3)
J=l i=1
As usual, (xij ’713) 1s the 13 sample value in the 32 region and
n#

l -
E? gz(xij’yij) is an estimate of Z4e

By following the procedure in the previcus section on Systematic
Sampling, the variance is shown to be

v p202
v, - Z -:’;51 (L)

J=1
J

To minimize Vh’ subject to the restriction that Z n’ = N, it is
j-

necessary to take the unrestricted minimum of

J 2 2 J

P.o, -
Z +k>:n3‘ (L5)
J-l j-l

This minimum occurs when

P.o
3 - we)



- 104 -

where
VEe§D pyy (L7)
7
therefors

] . (18)
KR

The result is reminiscent of Importance Sampling except that the

importance of a region is measured by ch:'j rather than p‘1 :5

The variance becomes

1 2
2
p Rg—
.gqj
1 2 - -2
Vi "N [me .3+ ZPJ(‘J N “)] (50)

As in Systematic Sampling, the variance due to the variation in ?;
ig eliminated. In addition a variance due to the variation in g, is also
eltminated.

As mizht be expectied, Qh is mors accurate than 32.

L pZ;? ) p262
V7. =T, = o . z2° - Ll (51)
22;1!29-3 Zpg
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Substdtuting a§ - :g - 342 one gets

[

2
1 ZP; -2 =2
72 -Yh-'[ PS‘J-’] (52)

HIE

-} 2 el -9
which is greatsr than Q.

The problem may bs such that the pJ': are not koewn explicitly. It
can then be very inconvenient to try to force, in advance, the region in
which the point (x,y) is to fall. In this extremity a variation of the
above sampling technique can be used.

a. A point (x,y) is picked at random and the ] region to which

it belongs identified.

be I n! points in this J reglon have already been picked, the

point is discarded and a new choice mads.

ce If less than n3 points have been picked then the evaluation

s(xia,yu) is made and the value recorded.

The above process can only be useful if the cost of picking a point is
campletely negligible compared to the cost of evaluating z(x,y). If the
cost of picking the point (x,y) is not negligible, the process in principle,
should be changed. The decisien whether or not to discard a point should
depand on how many points have already been picked in all the regions, and/
or on the relative costs of picking and evaluating. Purther discussion
on this point will be found in Section 19.
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If, as is often true, the camputer has good estimatas of EJ available,

he may wish to take n-’ proportional to this quantity.

Np.x .
ny - _%_1 (53)
In this case 2
1 - a
v, - §3 Z P, ;Ji | (Sk)
1 2. 3 Y
V-V, = Y[Zpdad(l - ;E;) *ij(’d - 3) ] (55)

Since equations (5h) and (34) are identical, there is no advantage to
be gained by doing Systematic Sampling, or Stratified Sampling proportional
%o 'z'j, when Dmportance Sampling proportional to ;J has alrsady been used.



8., Usi ected Values {A

Sometimes it is a simple matier to evaluate ZJ analytically. Than if
the p, are known cne can write DY pji.1 and there is noc necessity to do
Monte Carlo. Sometimes though the p:j ars nct given explicitly and but only
a complicated way of sampling for them is given. There is them no point
in using Monte Carlo toc do that part of the problem which can be done analyt-
ically., Only the j value should be drawn at random and then ij usod for

the estimates
N N
58D ) (56)
i-]
;J(i) is the analytically calculated expectsd valus of z(x,y) in

the J region that was picked on the 123 sampls. The varianc'e is

Voo } D py(E - D2 (s7)

Vp=Vg = Z"J“g (58)

As would be intuitively expected, the variation dus to the fluctuation

of 3(x,y) within a j region has been eliminated. In many problems this
variance eliminated is very large compared to VS.
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9. Correlation (4)

It is sometimes desirable to do two or more problems simmltanecusly.

This occurs, in particular, when one of the following thres conditions

hold:

de

be

Ce

The answer to one of the problems is lmown. The answer to the
unknown proolem can be calculated more accurately by adding the
estimate of the differsnce to the known answer rather than by
estimating the unknown one directly. The known answer is usually
the solution of an idealization of the problem of interest.

The differsnce between problems is of interest. If the sampling
is carried out in a correlated fashion, it is usually possibls

to estimete the differences more accurately than if the sampling’
Vere done on the problems independently and the answers subtracted.
A parametric study of n pm_blm is being conducted. If the
problems ares docne simmltaneously, it may not be necsssary to
duplicate n times the similar portions. This will bring down the
total cost, or enable the computer to do a much larger study for

the same cost.

For the example to be considsred, it will be assumed that the computer

knows how to evaluate, analytically or otherwise,

v -// v(x,7)g(x,7)dxdy (59)
A

and that z = ov will be estimated by the sampling (condition a). As bef>re,

a set of quantities i3 defined for each j region:



- 109 =-

ay = [/g(x,y)dxdy
gx7) (x,7) in &,
P 3

(x,7) =
- 0 (x,y) not in A

3
7, - Q// v(x,7)g, (x,7)dxdy (60)
v = [P @mey ey

In addition, the correlation coefficient p is defined by

pe(z=2)(v=v) (61)
5,9, :

[}
al
[}
(.1 ]
<

Q
NQ

where 9 is the s.d. of 2(x,y) for the sampling method used and 9, is the
corresponding quantity for v(x,y) It can be shown by applying Schwarz's
inequality to the j(z - ;)2f(x,y)dxdy, /(v - ?)zf(x,y)dxdy, and

/(z - z) (v = ¥)f(x,y)dxdy that <1 <p<l.



ek
The corrslated sampling can be carried out by the following scheme:
2. A 3 value is picked at random from a set of probabilities qj.
b. For every value of J picked, an (xi,yi) is picked out of
£, (x,7) and an (x},7}) from gj(x,y). If it is feasibls the
(x',7') may be correlated with (x,y); in this case the (zi,y;_)
is picked from a g(z!',y':x,7).
c. (a) and {b) are repeated until N samples are picked. An estimate
of z is then calculated by

'26 “% -a(F -7 (62)

N

A 1T Py

X ol TN
N

a_1 q;](iz
vs= v(x!,y!)

The computer should try to pick ¢ to minimize

- kB-D -6 -9)

(8 -3)°-2aF=-3)F -7 +ai(F -7)°

- }]i [ci - Zapc'lcz + azag:,
where

) P4]2 '
c§_ 'zqg //%j (x,7) ;,}] £4(x,y)axdy - z2 {(64)

- A . o —

- e e



Z/jﬂ £,(x,y)dxdy - 3°

poyT, -Zv - zV

zZv ZQ3////[2(X:Y) —1} [v(xl’yv) 2_%.] gd(xl’yl :x,y) £(x,y)dx'dy' dxdy
“2 Z%//‘f (xt,yt) -J] gy(x!, 7" ax' dy! -
"231',?‘ )qZ 2
QZI-J__&?__.J. gj(x"y. )dx'dyl -y

av
The optimum g is determined by setting -&é = O which makes
. -
aep= (65)
2

With the optimum & the variance bacomes

I 2
Thersfore it is seen that the higher the correlation, the smaller the
variance V6.

Unfortunately the computer usually cannot calculate a analytically.
It can be estimated by substituting 2, ¥, G, and’;z for the corresponding

expested values in

¢=r g (67)
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If the same sample that is used to estimate Z and ¥ is also used to
estimate @, then the variance of Qé can no longer be simply expressed. In
addition, it is conceivable that a serious bias could be introduced by
such a procedure. The following alternmative can be used. The sample is
divided into two equal parts: 43j, @', and ¥ are calculated from the
#irst part, 2%, @, and ¥ from the second part, and the estimate 1s changed

to
3 =% - > - ) (68)
or '%g Y R N C TR
The variance of either of the above estimates is
VL=V - % [0'2 - 2’-5'96102 + é-‘.zo'g] (69)

= %32(1 -$%)

This ie twics as big as the optimum variance of equation (66).

If the averags of 2} and i}é is taken as the estimate, then the variance

2 %vg + 35 [a' (v = ?)’ (10)

which can be shown to be lass than V‘é.

becomes

In some cases the computaer will be able to calculate 022 analytically,
but can only estimate 91T It is not necessarily desirable to use this

combination, because the estimatas of the two quantities are corrslated,
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A A A A
2V = 2V . . - v
may have a smaller variance than Z

2 ;z 32

(309

and

vée v
John Tukey has pointed out to the author that equation (70) is not
"maximally ingeniocus®., It suffers from the defect that the correction
term mﬁ has not been made as small as possible. One way in which
it can be made smaller is to proceed as follows:
a. Divide the samples into K parts R each with N/KX samples.
b. Estimate 3, ¥, (p/al\az)k and (g,%), for each part, k = 1,2,¢ss,Ke
ce. Define c’i‘ by

A
14k (;;2)1
a'l;' is therefore independent of the other quantities with the

(M)

Same k subscript.

"3"12[ -all'(v -;] (72)

de Let

Then

| )
vy - %‘[v + a."palaz . 5-_"’%:} -p—cﬁz-k-(v -v) (73)
("2 )i

and the correctiocn term is divided by K instead of 2.

e. Be%xse the number, N/X, of samples in each part may be small,

poya

{poyo,)
—-Lz-k may be a very biased estimate of 2 » While a bias

(U ) 022

in the estimate of a" does not bias the estimte of z it is

desirable to keep such bias's small. It can be reduced by changing
/\

the definition of a.'l'é to



A 2 (o?la )
a' 11 = u (m)
k Z A,
(2,2)
i=k ‘72 ‘3
It is intuitively clear that the correction term will still be
A
of the same order of magnitude if this definition of a.'l!(' is used
instead of the one in (c), but that the bias will be smaller.
If the ¢ is fixed then the computer should try to choose q's to minimize

the variance. Going back to equation (63) and rearranging terms

2 2 2

V6 ﬁ : q3 -{z-cw) (75)

The optimum q's to use for any given « is given by

=X | "g:dz = 20pyq3vy ““ﬁ (76)

K=1/3 p§:§ - 2¢quj%;_j' . uzqug (M

If this is done than



10. Russian Roulette and Splitting (4)

Two of the tecmiques, Importance and Stratified Sampling, depend
for their effectivensss on the computer being able to change thes sampling
probabilities so that a high percent of the samples are in the important

A, regions and small percent in the unimportant ones. In scme problems

J
this cannot be done easily. If, for instance, pj were not known explicitly,
but wers obtained by an involved process with many stages of agnpling, the
computer might not know how to force the separate stages to make the final
sampling of } proportional to an arbitrary set of pg' s. In this eventuality,
when the sampling is such that first a j is picked and then an (x,y), the
following process can be used:
&, Classify eiach region Aj as being of type I or II. In type I,
either because the variance is smill or the expense of picking
(x,y) and eval{:ating s(x,y) is large, the computer wishes to
avolid gettiing many samples. In type II the exact opposite is
true. The mumerical criteria for distinguishing the two iypes
is developed in the argument.
b. In type I regions, where the relative contribution to the answer
i3 somehow small, Russian Roulette: is used. When in such a
region, a sampla (11’71) is obtained only scme of the time, say
with probability Qs and z(xi,y:'.)/q‘j recorded for the sample;
otherwise, wit.h probability 1 - qJ, there is no sample taken

1l The name, of course, is derived from a well known game of chance said
to be popular among Russian army men. The sampling tecmique itaself
originated at Los Alamos. John von Neumann and Stanley Ulam ars responsible
for both the sampling technique and its name.
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and zero is rscorded. If the first eventuality is rsalized,
only one (x,y) need be picksd and one z(x,y) evaluated. If
the second sventuality materializes, no (x,y) need be picked.
The expected value of the sampling has not been changed. The
variance v, for estimating z p given that j has been picked, is

z

I - ‘

Yoy = 3 z (79)
ce In type II regions, Splitting can be used. nJ values of

(x,y) are picked for cvery J; The sample estimats is then
the arithmetical average N‘ # z(xi,yi) where (xi,yi) is the

iﬁ point picked on the sample. The variance of the above

expression is ;2 } ;2
Py = it (80)
.«.':’
1 2
- .zg o'j

The variance of the whols process is given by equation (23) which

takss the fom

J

J .
- = =2
Vq Zpi(z‘j - z) +ijv7j (81)
J 2 2 ? [v 4
oo g
I h¢ I J
a
-7 #ij >

IIJ

[\ ]

——

— o~ —— —
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where
=2 =2
Vo ijzj -2
II

The expected marginal cost of a sample is given by
= 8
c=c, 4-ijqjc:j + gpjnjcjl, (82)

where Co is the cost of picking J and Cj is the cost of picking (x,y)
and evaluating z(x,y) in the J-tﬁ region. -

It was shown in equation (9) that an efficient sampling scheme
minimizes H = CV,> To find the n,'s that do this, it is comvenient to
assume that they are cantinuous variables so that the ordinary techniques
of differential calculus can be used. This assumption has only a minor

effect on the results.

3 v,

W'ij‘%v7'o (83)

ov v

3,,—; .-t g‘,f-i (8L)
Using (81) and (82), and solving for nys

i
. - " - ijcj
J

ny = 2y/\Cy (85)

where A= \jc/v., (86)

2

1 CVo corresponds to C,0" in equation (9).
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This result is intuitively pleasant (and reminiscent of squation L8).

Similarly it can be shHown that

4 n
q, A zj/bj (87)
If these ny and qy are used, V, is obtained by substituting (85) and

(87) into (81) and (82).

1 \I’Z '
V7 - vo . X{ZPJ sz;l +§pdcj \FJ—} (868)
£ ‘{‘_-z
C=cC,+ xinj iep +Zpdaj ﬁ} (89)
T it

By dividing (89) by (8€) and using G C/V7, A\ can be aevaluated:

c
2 Q
A - ro (90)

The conditisn for a type I region is that \ T/C < 1l, For a type
II region )\ az/c > 1, It can be shown it is best to assign the border-

line cases, \ oz/C 1> XZ-Z/C

p to type II. Equation (90) for A\ is
an implicit relation. Vo depends on the number of type II regions which
in turn depends on \. The dependence is, however, not sensitive, so it
is easy to adjust the two factors. In fact, almost any iteraticn procedure
will converga.l

In most problems Cj i3 not a2 zensitive function of j arnd can be taken
equal to an average C'., Similarly thers is very little error introduced

1f V is taken equaltova-(ij-i)z and the‘%toa When ) is set

j.
c
aqual to = and these approximate substitutions made, equations (88)

L

1l It should be pointed out to the more cautious readers, that the
darivation of equaticns (85) and (87) can be justified even if the regions
I and IT are allowed to depend explicitly on X\ or qJ and nj.

- 4
-
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and (89) become

V, =T+ T Cg c! (91)

.lc
c-c°+3; vilc' (92)

In this instance, the improvement due to the change in variance
cannot be calculated directly as before, because here cost of a sample
is taken into account. When ordinary sampling is used, the product of

the cost and the variance is

vy = (C0 +C") [Vé + ;3} (93)

Using Russian Roulette and Splitting,

- -2
CV, = C V! + 203 \{coc'v:’ +« C! 3 (5L)

Subtracting (S4) from (93) and collecting terms
1 =Y ' . 2
V) - CVg = (6 + C') (cj - ch) + (\jc'vo - 3, \F‘o) (95)

The first term on the right side of equaticn (95) is easily inter-
preted. (Co + C') is the average ccst of a sample when doing straight-
forward sampling so the improvement is measured by comparing (o& - S;)z
with 7y (i.e., the variance of 95 with the variance of z(x,y) ). Thers
is an additional improvement given by the second term which is related %o
the fact that even if aj didn't vary at all, it might still pay to sample

many (x,y) values for every j picked.



11, Introduction to Section B

The seven methods just introduced in Section 4 through 10 will
now pe trsated again in Section 13 through 19. The point of view
will be somewhat different and in most cases the discussion is more
complets. Thers will, necessarily, be some paraphrasing and repetition
of the previocus sections. However, the ability to set up an efficient
Monte Carlo problem depends more on the intiition of the computer than
on being able to evaluate the forrmlae given, and paraphrasing may make
the ideas clearer, thus helping to cresate a sound intuition. For the same
reason, a possibly excessive number of special cases and techniques are
discusased,

As already #plained, most of the dia;:ussion and formulae are
unchangsd if x or y are actually mltidimensioned variables. In most
applications it is necessary to maks this extension.

In what follows, each value of x is thought of as defining a "cut*
or region of the whole space. These regions take the place of the j
regions of the previocus section. Thus z(:x) is analogous %o ;j’ Though
the implicit multidimensionality of the variable made two dimensions
superfluous until this point, now for much of the analysis which follows,

twc variables are necessary.
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The following quantities, some of which have been defined before,

are needed in the discussion:

£(x) '/f(st)d}' = the marginal p.d.f. of X
g(v) =/ t(x,v)ax e the marginal p.d.f. of ¥
fx:y) = £(x,7)/ely) = the ped.f. of X given that Y = ¥

gly:x) = £(x,y)/f(x) = the p.def. of Y given that X = x

z(:x) -/z(x,y)g(yzx)dy = the expected value of z(x,y)

- given that X = x
z2°(:x) -/zz(x,y)g(y:x)dx = the expected value of zz(x,y)
given that X = x

z -/ z(:x)f(x)ax

- [2(:7)e(r)ey

- f/ z(x,y)f(x, y)dxdy

2 - 22(ix) = [ POR)E(R)E
-f Z(:7)a(v)ay
- // 22 (x,3) 1 (x, y)dxdy
Al:x) = 22(sx) = F(:x)

oz(xz) -/0'2(:x)f(x)dx

vy -?- 2 - crz(:x) + %(:x) - 2}2



12, Estimating z(:x) and :z(:xl

22(

It is often desirable %o estimate z(:x) and :x) by sampling.

In principle this can be done by picking N values of y from g(y:x) and

-

then estimating z(:x) and z°(:x) in the standard way:

N
B0x) = § D 2lyy) (96)
1l
A N _ '
2%(1x) -% Zzz(x,yi) (97)

However, the computer usually wishes to estimate the whole function

z(:x) and ?(:x). It may then be tco expensive to sample intensively at
every value of x or thers may be scme evaluations of z(xi,yi) available
from previous problems in which the x, have been plcked in some random
fashion. The simplest procedurs in this case is to divide the x space
into a mmber of interwals [a. re1? ar] (if x is multidimensional, these
ars subspaces). Thsn by testing if a_, <% 2a, sach of the z(zi,yi)
can be assigned to an interval. Expected values for each interval can be

estimated by:

/z\r -3 Z biz(xi’yi) a1 <X 2a, (98)
where B.=12Z20
r % i
g
3, =C, Zci“xi’yi) 301 <% 23, (59)

5
d

bod l/Zci

— e - ——
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The b, and ¢, can be taken equal to one if desired. If, however,

the z(xi,yi) have been produced by different processes, and

b, =1/ :zz(xi,yi) - iz(xi,yi)] - 1/ci (100)
2
e, =1/ rz[‘(xi.zri) - zz(xi,yi)] (101)
L

A
the variance of ;r and zi are minimized (see discussion on averaging
different estimates in Section 18). If the intervals are taken small

enough the computer can assume that

3, = i(: Xk T
x +a
32 = oo (s “”12 ) (102)

However, i1t is undesirable to take the intervals too small, because then
thers won't be enough sample values in each interval to make the estimate
accurate.

There is an alternative techmique which the author feels is slightly

more desirable. Define

J(x) = Zbiz(xi,yi) X, £x
K(x) =2 by

i (103)
L(x) = %cizz(xi’yi) x <x

M(x) = g Cy
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The previocus estimates can be written

A 9@ = Jda )
r TR - KAy
r r-1) (10)
o Usg) - La,_y)
r Ha,) - Mla,_4)

It is clear that if the empirically determined J(x), X(x), L(x), and
M(x) are first smoothed out so that derivatives J'(x), K*(x), etc. can

be calculated, estimates of z(:x) and :z(zx) ars given by:

oo - -8/ 8
A (105)
S - G B/ 8

The advantages, if any, of the above technique lies in that thers
are no intervals to bother with, and that the smoothing operation makes
every sample contribute to the estimate for any given value of x. It is
also possible to use variocus curve fitting tecmiques (See Appendix IV),
but these have the disadvantage of requiring that hypotheses te made about
the functional nature of J(x), K(x), L(x), and M(x). Nevertheless, curve
fitting techniques can be very useful if it is desirable to make the
estimation of z(:x) or ;‘Z( :x) completsly automatic. If the functional form
assumed for z(:x) or :z(:x) has some validity then using it may be a very
advantageocus way to extract a larger amount of information from the sample

than i3 done by thes other methods suggested.



- 125 -

13, Straightforward Sampling (B)

As in Section A where first j was chosen, now first the will

=t
be chosen, and then the Vye This can be done by solving the equation

/x *t)ex = B (106)

-“
for Xy and then the equation
% ”
/ g(y 1x,)dy = R, (07)
-
for Y45 or any of the techniques suggested in Part I can be used. Once
the saaple values have bean drawm,

N
?1 - ;Ji Z’(‘i”i)
i=1

—————

p R -2
’1'1«[ -z (108)

- {[{ - 302+ [Em) - ;]}2

=22 - 3(:x)) ‘. [5G:x) - 3] ‘

- az(zx) + [;(:x) - 5} 2

The two terms can be interpreted as being the variation of z(x,y) for

fixed x and the variation of z{:x) respectively.
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1k, Importance Sampling (B)

By dividing and multiplying by an arbitrary p.d.f., £*(x,y), 3
can be written

- £(x,y)
3 // z(x,y) m:-% £#(x,y)dxdy (109)
which indicates that z is also the expected value of

f(xi,yi)

1 4
3 - ‘N g.z(xpyi) W (110)

whers the (xi,yi) are picked from the p.d.f. f»(x,y). The variance is

2
Vo - [/ %‘%‘ﬂ] to(x,7)dxdy - 3° (1)
- //‘z(xiafi(x‘z) dxdy - ;2

V, 13 minimized (Apvendix ITI) when

glven by

*(x,y) = X | 2(x,y) 1 £(z,¥) (112)

where £ =1/ [ 1 3(x,7)l £(x,7)ezay

If 2(x,5) is everywhaers positive and the optimum £#(x,7) is used,

Vz = Q for
f*(x’y) - .z_(i:.l-)Lf(_xJ-ﬂ (n})
3
and
3(x,,7, )22,

f*( xi, 71)

_— o e —

e e



independently of what (xi,}'i ) happened to be picked. It is clear
that there must be sometiing a little fraudulent about the result, and
in fact, in order to know what f#(x,y) is, the normalizing constant z
mst be knomn., It is therefore not miraculous that if the answer is
nown in advance, a perfect sampling schems can be designed. The chief
value of the above theorem is that it demonstrates tlat there are no
"Consarvation of Cost" laws and that if the computer is clever, wise, or
lucky, he may, in choosing from the infinite number of sampling schemes
available, be abls to choose a very efficient cne.

When z(x,y) changes sign in the area of integration a perfect sampling
scheme cannot be designed on the basis of importance sampling alone. If

8(x,y) is +1 or =1 according as z(x,y) is positive or negative, then

z(xigyi)f(xilyi) 5(81,71) (nh)
ml’yij - i: |

-

v, *§ /[Eﬂ-?ﬁ]z K|z(x,7)! £(x,y)dxdy - 22} (115)
- %{% f/’z(x,yﬂf(x,y)dxdy - 22}
a7}
't%; w’ll(x,r)lr(x,ﬂct:dy]z - [//z(x,y)f(x,Y)dde]z
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- ‘%ﬂrjjﬁ;(x,y)l - z(x,y)] f(x,y)dxdy} {//!’ [gz(x.y)l + z(x,y)]
- - £(x, y)dxdy

-

- %Lf{ 12(x,7) | £(x,y)dxdy] [ 4/ z2(x,y)f(z,y)dxdy|

P

where 2(x,y) is negative in A, and positive in 4,.
If, as might be the case, there is a known lower bound \ for z(x,y),

then thers would be a perfact Importance Sampling scheme for z(x,y) + .
Or it might eecur that the positive and negative parts of x(z,y) could be
treated separately. But it is often not practical to consider these devices
as part of purs Importance Sampling, It is still possible in principle
to design a perfect sampling technique for a general z(x,y) by using
Comlation in addition to Importance Sampling., If, for exampls, i% is
possible to find a function v(x,y), such that

7 o ffvx, 0t (x, r)exdy (116)
can be svaluated analytically, and such that

z(x,y) + v(x,y) 2 0 for all (x,7) (117
then a zero variance scheme could be designed for the integral

L= ff 57 + vx,9)] £lx,y)axdy (118)

and z estimated by (I = 7). There is some more discussicn on this point
in Section 18.

The name Importance Sampling was suggested by the theorstical zero
variance estimates and by the corrsesponding generalization to integral
equations. lz(x,7)/f(x,y) measures the importance of the point (x,y) and

the optimum sampling p.d.f. is taken proporticnal to this quantity.

—— -
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It might be interesting to note that if z(x,y) > 0, the optimum
importance sampling for z will also reduce the variance for the estimate

of the higher momsnts, 2. The variance of the estimate of z° without

importance sampling is

——p
Ve ff:zn(x,y)f(x,y)dxdy - 30 (119)
—
-3® .0

and with optimm importance sampling it is

2n -

Ve //_" (i xz‘j(" ) dxdy - 27 (120)
)
- 3 J[ & x,1(x, )exdy - 25

-=I =

-z32 -z

fro show tnat 2 2201 < gon
zT ’n—-f < :n'. Since é(w) = log // z'(:;,y)f(x,y)dzdy is a

convex function of w and $(0) = 0, it follows that ¢(u) + $(v) < 9(u + v)

it can be shown more generally that if

s(x,5) < 0,

which is the property above. Hence the variance has been raducedg

It is, however, not true that any f#(x,y) that decreases the variance
of the estimte of 3 also decreases the variance of the estimate of 2.
In fact it is easy to exhibit counter examples. |

In the general case as shown in Importance Smpling (A) (Section 5),
the sampling should be taken proportional to the a priori prebability of
getiing into a region times the square root of the average of the square
of 3(x,7) in the region. This rule is illustrated in the different types

of Importance Sampling discussed below,



Importance Smpling in the x space only.

Let 3 be written:

i-Jf [z<x.y) e ] £3(x)g(yx)dxdy (122)
and
n N £(x,)
z - zz(xi,yi) T (122)
i=1

where the (xi,yi) are picked out of f*(x,y) = f’(x)g(yix).

L2y [z(x.y) r({-)-,] £2(x)g(yrx)dxdy = 30 (123)
1 [ sz(x £2(x) -2
-3 /]—5{-,7;}— g(yrx)dydx = Z
I

f 2
L/z (::)iz(x) dx - ;2]

The minimizing £#(x) (Appendix III) is given by

n(z) = [ 22\ [z peirme (124)

« £(x) ?(::)

‘:z(:x) .




If this f#(x) is used, the variance becomes

—_—
v, - %[/:Z )£ (x) V52 (1) dx - ;2] (125)
£(x) 7(::)

-%[ :z(:x) / :z(:x) £(x)dx - -2-2]

The difference between this variance and that obtained by straightforward
~ sampling is 2
Vv, -V, " ,l, [:z(xx) - \z°(:x) ] (126)

and the variance is reduced by the variance of a random variable that has
a probability of £(x) of being equal to\ s°(:x).

Sampling only from the x space is significant because it is common
in practice to break the problem up into two or more stages. If this is
done, optimum Importance Sampling means that the a priori probability

£(x) of getting into a region x should be modified by the factor zT(:x

)e
Only vhen Importance Sampling is done in the entire space is the factor
lz(x,y)|. In that case, the word "importance" is used in its natural
sense--that is, those regions are called important that make large contri-

butions to ths answer being calculated. However, the natural analogue
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of | 2(x,7)1, | 2(3x)!, is not the correct factor for optimum Importance
Samplingin the x space alone, but rather z°(1x).
In some problems the difference betweend '85(22) and | 3(tx) | may

not be great. ;!(:x) - az(xx) * iz(zx). Ir cz(tx) is smll then

?( :x) = z(:x) (27

In general, if the computer finds it easier to estimate Z(ix) than ;’(zx),

he can iry to take

f*(X) - f X).l E(SZN (128)

Z

If this is done, the variance becomes
r = l
v, =% ;{.f_(res%. - 2 (129)
’ H) J

1 [_z_u]
LI [P

While V2 in this case is ordinarily much less than Vl, it 13 easy to see
that it can be large and in fact disasters are possible if care is no#
takan. -

v, -7, -% o®(1x) l.l - ‘;:x)l] + [E(:x) - E] ¢ (130)

and the computsr must then worry about a possible special treatment of

regions in which z/!1Z(:x)| is large.
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As remarked befors, the problem of estimating ?(:x) or 3{1x) is
crucial in Importance Sampling (estimation by sampling is discussed in
Section 12). This is not necessarily difficult. In particular, know-
ledge gained from any sourci can be exploited for this purpose. In any
case, only the relative imnortance of different regions m.d not their
absolute values need be known.

Inportance Sampling with a paraneter.

In many practical problems it is convenient to restrict the .choice

of f2(x,y) to a single family of p.d.f's. This may be desirable to do

for either computing or theoretical convenience. If such a family is
represented by h(x,7,a), then it is desirable to determine ¢ so as to minimize
the variance. This is equivalent to minimizing

2
// [ x’yf(" )} h(x,y,a)dxdy = [/ uﬁgg’-%‘ﬂ.dxdy (131)

h(x,y,a) is subject to the usual conditions:

//h(x,y,c)dxdy -]
h(x,y,a) >0

If the form of h(x,y,a) is such that these conditions are satisified

for all values of a, then the optimum a is formally determined by

/ (x,7)22(x,y) an(x,7,a) dxdy = 0 (132)
h (107:

If the h(x,y,a) is not alrsady normalized for all a, squation (132) is
replaced by the set (Appendix ITI).
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] ( tz(x —Lyﬁl dxdy = X/ % (x,7,a)dxdy (133)
h™(x, 75

a)

//h(x,y,c)dzdy -1, (13kL)

and two unknowns, ¢andk,mstbodmmimd.> Ay of course, is a
lagrangian multiplier. When h(x,y,a) is not a function of y, the inter-

22
gn.tion on y can be performed and the quantity (x fz(x
2 (1x)2 (x). b%(x,7,0)
B (x,a)

is replaced

Often the only practical method of solving equations (132) or (133)
is to do a preliminary parametric study by Monts Caflo. The function

22
I(a) = /f =z ;’f 50 axay (235)

It is of course possibls to svaluate (135) by Monte Carlo. It is

to be minimized is

not necessary to sample from h(x,y,a) when doing this evaluation because
I(e) can be written

2

so that an estimate of I{g) is

2
(xi‘yi)rz(xi’yi) ’
1(a) 'FZ R, 7)) (137
i=1

whers the (xi,yi) are picked cut of f»(x,y).

— m i o
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The chief application of (137) is when f%(z,7) = h(x,y,4)and we
wish to evaluate I(c) for a series of a's, say a5 Gy and Gqe Then

2 .
I(a) = /fﬁﬁ% n(x,,0, Jdxdy (138)

32 (xi,ri)tz (xi.yi)

L]

Sy ol 1 -

2e) x}lw B, 7500) (139)
i= _

It is important to notice that a number of a's can be studied with
the same (xi,yi) sanple values, as only Uh(xi,yi,a) neseds to be recalcuated in
each case. In principls, all I(a) val ues desired could be sstimated
.using the same importance function but it is likely that this will be good
Importance Sampling only in some region of the a space, perhaps in a
neighborhood of e

This, of course, is an exampls of correlated sampling, Not only is
the work per value of @ reduced by the correlation, but sines the computer
is interested in comparing differsnt I(a) the sampling is more accurats
than if it had been carried out independently for each value of a. This
ocours because in most problems the I(a) will be positively correslated and
flnctuate in ths same direction., It is, of course, posszible to use the
same technique toc evaluate 24( and maybe even -33:2[- directly and use these
quantities to estimate what a should be in a sub:quent calculatione.
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In particular, if &, < &y and ey > &y, I(aj) for these three values
might indicate how g should be changed to decrease the sampling variance.
The problem might even be so programmed that this adjustaent of a is done
automatically by the computing machine. The author however, does not know
of any case where this has been tried, and the procedurs certainly has
dangerous pitfalls. It seems, however, natural and intriguing emough
to mention.

Use of Extra Freedon

It has been pointed out™ that the & in h(x,y,s) provides extra freedom
which can be exploited by giving it a p.d.f., p(c). If this is done, the
G can first be picked at random from p(a), and the (x,y) selected from
h(x,7,a). For the problem and technique of this section it would
presumably be valueless to do this. Since an optimm a exists,
the best p(a) is 8(a-c ), where a, is this optimm . However, if the
technique is combined with the use of expected values, it can be very
helpful., This combination of Importance Sampling and Use of Expected Values
is discussed here rather than in Secticn 17 because it seems to be more an
«oampls of the former than the latter. Also, as ths ideas given hars are
scmewhat speculative, the details ars necessarily skestchy.

The point (x,y) is a function [x(a'.l.’RZ’“)’ y(Rl,az,a)] of the uniformly

distriuted random numbers Rl and 32 and the raramster c. If ¢ is given

1l Jale P. Trotter and John W. Tuksy, "Conditicnal Monts Carlo for Normal
Samples", Symposium on Monte Carlo Methods, John Wilsy and Sons, 1956.




- 137 -

£(x,5) can be integrated over all a tc give

Xy¥sQ
an estimate Ii for each sample

a p.d.f. p{a) then z(x,y)

f[x(B-l,Rz,ﬂ),Y(B-l,RZQG)
Ii = jz [Z(H)RZ,G)’Y(R].:R?:G)] h[x(al’p?'a).y(ﬁi,ﬂz,a,

T(a)“ (1k0)

If this is done ,
i?.‘ - /p(a)p(a')l(a,a')dadn' (1)

where

Heas) .// rmyisatyrt) h:’(::y’lr;x;' ,;?,c- A&, dR, (1h2)

is a2 symmetric function of < and o', and

x = x(R, ,R,,a)
7 = ¥(R&,Ry,a)
xt * x(Ry,R,,a")
7 = 7(By,R,at)

In order to minimize /]-p(c)p(a')I(a,a')dnda' subject to the condition

that p(c) be a p.def. it is necessary to minimize the form
J] #l@)p(ar)1(e,at Yadat - 21 fola)da (1s3)
for those p(a) > 0. This minimization yields the integral equation

/p(a)I(a,a' )da = A (1Lh)
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If I(a,a') happens to possess a resolvent kernel H(a',p) with the

property
J 1a,at)u(ar ,8)dar = 8(e - p) (145)
then [(at ,a)dat
pla) = (1L6)
/ / H(a!,a)da'da
and

T

= 1/ /[ H(a' a)darda (7)

Integrating over p(a) can also be used to estimate a z', whers z'

2! -//s(x,y)f(X,Y)d:dy (1L8)

A
1
and ‘1 is a subregion of 4. To do this, a subregion of the a space,

is defined by

S(RysR,) 18 defined, so that when & is in S(R,R,), the point
[x(%),8,,0),7(R),B,,a)] 45 1n 4y. Then

£[x(Ry2Ry1), 7Ry 1Ry, 0)]
;- 3 (xR ,R5,a), sRyr3) | = pla U
Ii 31(31/132) [ (Rl Rz : Y(Rl Rz )]hE:'(R-l:Rz’“):Y(Rl:Rz,“)sg ()ea :

is an estimata of ' independently of the farm of p(a) so long as

h(x,y,a) is not sero for any (x,y) in A,. The optimum p(c) is defired by:

— e ———— ——
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I' (a,at) = // Dz, IDlxt 7 )a(x,)a(xt,7) (I EAT - —ap ar, (1)

whers
1 if (x,y) is in Ay

D(x,y) = (151)

Q otherwise
and the other quantities have obvious definitions.

If the computer wishes to estimate the conditional expected value
of s(x,y) given that (x,y) is in A,, then

z2(14,) = /f z(x, ) (x,y)dxdy/ // £(x,y)dxdy (152)
7
1

A

1
= 3/PQs,)
" where P(Al) is the probability of the point (x,y) being in A. If P(Al)
~ is not kmown, it can be estimated by
£ix( »8),¥( »R,,a)
PA,) = (20 2y00), 70 80 0)] p(a)da (153)
h!}(ﬁ:nzsa)aﬁﬁ’nzo¢)oq

S(R;,R,)



15. Systematic Sampling (B)

Instead of solving the eguation

/x if(x)da: = Ry (154)

- O

for X5 it may be simple to select the x, systematically by solving the

equation
p 3 .

i 1-1/2
f(x)dx = 1 w1, 2,...,8 (155)

- oo
Used in the right places, it is almost always true that systematic sampling
in x is relatively or completely cost free.

The axpected value of z(xi,yi) will not in gsneral be appreciably
changed by this process. However, the purpose of using (i = 1/2)/N is
to pick systematically the midpoint of the N intervals defined by

1+1 1
f(xldx = N (156)

1
Always picking the midpoint may introduce biases. These are eliminated
1f Systematic Sampling is combined with random sampling by using (i-B.l)/N
instead of (1-1/2)/N. A different Ry 1is used with every i.
The y, can be obtained by a rejection tachrique or by solving the

usual equaticn

A
/ glrxidy = R, (157)

- o9

If this is done, ths estimate is

R i'z(xi.yi) (258)
1



e

where the X, are determined., The expected value of 23
A -
3,2 E z(:xi) (159)

-
FS

is given by

There is no averaging over the xy since they are determinate, not random,

quantities. However, from equations (155) and (156)

¥ = flx)ex, | (160)

Substituting in equation (159)

- N
3y = ) 20 )f(x, oz, (161)
1

=~ / 3(ex)f(x)ax

The variance is easily calculated.

A 2
Ty e (- )

.{% S Elxyn,) - z(;xi)]}z

5 By - 3=y ‘
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1

- F Zo'z(:zi)
= § Z o‘z(zxi)f(xi)ni
2, (162)

~ 1
r-Nd

The saving over Straightforward Sampling is simply (see equation (X08))

v -v,= g [0 - 52 (263)

The variancs due to the variation of z(:x) has been aeliminated.

It is possible to do Systematic Sampling in the x and y spaces
simltanecusly, in a sense, by also taiding a set of numbers =1/ ,
3 =1, 2,...,8 and randomly sorting them. These numbers can then be
substituted for Rz in equation (157). Whether the sort is costly or not
depends on the computing equipment being used.

If Systematic Sampling is used in both the x and y spaces, the variance

is still further reduced and the improvement becomes (as shown in Appendix V)

V-V, %{[E(zx) -3]° [5Gy - 2]2} {164)

shere z(:j) is defined by

Yj(x)
/ g(rix)dy = 3—;,]-‘@
- oo (165)
z2(33) = /s[(xlyj(x)] £(x)dx

-0

— s e - -

P
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Z(1j) is a sort of analogue in the y space to s(:x). If for any reason
it is inconvenient to randomly sort the numbers i}lﬁ and if l?s(::j) - §|2
is greater than |z(:1x) - % |°, then the x can be sampled at random and the
Y systemtically. In this case the variance is only reduced by |§(:3) -3 |2 .
Equation (14l) indicates that the variance V associated with the
ordinary Monte Carlo calculation of an n-dimensional integral must be
larger than the sum of n terms of the type {z(:i) = 2|, one far each
dimension. If all the terms are of the same order of magnitude, At.han
doing Systematic Sampling on any one variable will reduce the variance by
less than V/n. While this implies that there will be no spectacular gains
by doing Systematic Sampling, as alrsady mentioned it is usually costless

to use it.



16. Stratified Sampling (B)

In Stratified Sampling, equation (155) of Systamatic Sampling is

4
]xs(x)t(x)dx - 33172 (166)

- 0

) /u(x)f(x)dz

and a(x) is an arbitrary positive function. Here a(x) 1s the £#(x)/f(x)

replaced by

Y

of Impertance Sampling. The estimate is
N

- 3(‘1:?1)

where the y, are chosen randomly. The expaected value of the estimate is

1. Tslx)
o538 (168)
n°Y 3(313
It is easy to see thntgia equal to z for
1 e a1
g3 - a(z)f(x)dx (169)

1
= s(;:i_)t(xﬂ,‘_)A::i

If this value of gf 5 is substitutad imto [168)

R
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The variance is given by

v, - @ - 47 (170)
{ Zﬁ(xi.yi) - 3(: "1]
s(x
_ z&ww - EGx)]
2(:

. _22 2(==1)

s (xi)

2
1. ¢ (:xi)
= N 8 Z??;i-) s(xi)f(zi)Axi

=i3 / AT
-% Ul(x)r(X)dx] [ / ég;’,‘l f(x)d:]

Ideally s(x) is chosen to minimize -

Varying s(x)
o, - é{[/r(x)&(x)dx][ is%’flr( ax] - [ fa(x)e(x)e] [jaz(xx)f(x)&(x)aa}

(17)
-0
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Bquating coefficients of 8s(x) and cancelling % £(x),

2
21(.*_"1 / s(x)f(x)dx = f g (”‘)f(x)dx (172)
s“(x)

The minisum Vh is obtained by taking

s(x) = o(:x) (173)

n - % Efaf(ﬁlf(x)dx : (17y)
- § T&°

v, -7, . ,}{E’(m - » [202) - ;]2} (175)

In many cases it is more convenient to take s(x) proportional to

|8(:x)| « If this is done

[ 2
v, - % 3 = (’xi\t(x)dx (176)
| 2(sx)1 |

As can be seen from equation (129), this variance is the same as would have
been obtained if the sampling on £#(x) had been done randomly rather than
systamatically.

However, it is usually bettar to do the sampling systemtically
because for a general f#(x) the iifference in variance between the two

tachniques s



-7 -
<2 2
v, -, - %[/s (;x}):rz(xz -2 /a (:xlfzgle]
v % [[:’(si)fgle - ;2]

>0

(177

since V2 - Vh is the wvariance associated with doing Importance Sampling cn
the integral [ 3(:x)f(x)ax, Therefore, where it is easy to use Stratified
Smpling, it is preferable to Importance Sampling.



17. Use of Rxpected Values (B)

If it is possible to calculate analytically

3(sx) = [ 2(x,y)2(yx)dy

- 18 =

(178)

then this analytic calculation can be used in the sampling. 3 can be

sstimated by
| 6‘5 "l]f Z;(‘ 1)
vwhers the z, are picked cut of f(x). If this is dons

VS - % ii(!!) - E]

v, - Vg . § (1)

(179)

(180)

(1a1)

The rsader should not conclude from the trivial nature of the

example that the technique is not valuable. As is shown in the chapters

on applications, the use of expected values is often sufficient to change

what would have been a hard problem into an sasy one.

Fcrasort'

of corollary of this type of sampling see the axample at the end of the

next section.



18. Correlation (B)

Only one of the three situations mentioned in Section 9 on
Correlation (A) will be discussed in detail. That is: given that

ve- //v(x',y' )g(x', 7" )dxtdy* (182)

4
is imown, how can this imowledge be used to reduce the variance of the
estimate of

= ﬁ(x.r)f(x.y)dzdy (183)

The first part of this section will briefly discuss some of the
slternatives available to the calculation. However, exactly what role
these alternatives should play depends on t he specific application.

It will be assumed at first that the correlation is to be done on
the x space only and that the y*s in the two problems are to be picked -
independently. There are then at least two different ways in which this

ecan be dones

l. To use the same random mmbers in piéldngz and x',
1..0’ let

F(x,) = 0(x}) = B, (18s)

We can write

x(R) = F1(R) (185)
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and the problsm can now be put in the form

i / / f { k(r),7] - ayvfx (R).r']} tlrx@)] efprx () artr @R + o7 (286)
. //{@:(a).y]rb:x(a)] - ayv(rx' ®)] gfrx’ (aij} dydR + o F

2. to pick both x and x' from the same p.d.f. and then
to use weighting faotors as in importance sampling.
In this cass the problem is transformed to

T . ///[’(XQy)nf(r;: - “27(xsy") ’(xx ] g(y' tx){(pz)f*(x)drdm - ¢2; (187)

- [/Es(x,y) L) - o, LEDEDE)] rax)ayix + ayF

The a's are to be chosen to minimize the variances of the rui:ectiv-
estimates. I»(x) can be any arbitrary p.d.f. but it is usually convenient
to let it be either f£(x) or g(x). It can, however, be chosen to minimize
the variance of fé.

As in Section 9, the variance of both estimates can be written

Vg % (cri - 2@0102 + czcg) (138)

whers ;\6 is reapectivelyn

1. ;6 - % Z [s(xi,yi) = oyv(xy,7]) + “1;]

LD a1 2(x) g(x, ) .
2. 3 32['(xi‘yi)mi_p’ - czv(xi,yl)mxi? * 0,7]

e -



In the first case

// 2[:(8),1 [y:x(R)]dNR -
- / / 22(x,7)2(x, y)dxdy - £
A

=1
"g * //'2 [3' (R).r‘] g(y' 1xt )dy'dR - 7°
oo 0
. //vz(i'.y')g(x',r )dxtdy' - ¥

A

®1 ,
POy © /// {s E:(a),y] - E}{v@:' (R),y] - ;}
-O0 LOn °

f[ytx(n)] € [y' 1x! (R)] dydy'dr

. [1{:[.::(11)] -'}{;Ex'm] -7}

and in the second case

2
o - //{'—"é{%—‘ﬂ} £(yex)en(z)andy - &
A

2
. [/. GNP oy - 5
A

-51-

(189)

(190)

(191)

(192)



e 152 =

[/ 'x ) x) s(:nx)f*(x)dzdy-;z (193)
2 2
- [ f L) o(x, r)xy
/f [ 3(x,7)y; £ x v(x,y (nx)e(y! 1x)2#(x)dxdydy* - iy (W)

3( 1) ¥ :x;r(nggxz -
- f e dx - z?v

The two types of correlation mentioned above arse actually special
cases of a third more general type in which x is selected from the p.d.fe
£2(x) and x' from the Pedef. g#(x); the same random numbers being used
in each case and the weighting factors r(x)/fi(xi) and g(xi)/gi(xi) being
used with their respective funstions.

It is also possible to correlate the y and pick the x independently.
Por the first type of correlation it is then necessary to introduce
functions ya(x) and y{‘(x) defined by:

.
f f{y:x)dy = R

- OO

73 (=)
[ g{ytx)dy = R

0O<R<1 (195)

If R = (3=1/2)/N then ya(x) is identical with the 74 (x) discussed in
Ssction 15 on Systematic Sampling. The correlating is done by picking

x and x' independently from f(x) and f(x') respectively, but always

—_——
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‘picking the same R curve when picking y and y'. Cne way to do this is
to pick y fromthe conditional p.d.f. f(y:x); identify the R curve to
which this value of y belongs; and then let y' = yé(x'). If this type

of correlation is done u% and ag are unchanged but POy, becomes:

- ff/}(x.y)v(z',r)a[r - Ry} HxoT)alx! 7 Jaxdydxt dy! - IF (196)

where a[y' - &(y)] is the Dirac delta function. Its presence :Ln the
intesrand guarantees that y' falls on the same R curve as y.

In the second way of correlating y, the x and x' are still picked
independently from f(x) and g(x') but y and y' are identical and picked
out of a pedefs I#(y31x,x'). These tao ways of correlating y can also be
considered as a special case of 2 general correlation method in which y is
Picked out of #(yix,x') and y* from g#(y'ix,x'), using the same random
number im both picks. The usual estimate

(v, %) ' -
2 = %Z [;(H"i)fi'rq—fx’:l—,xp - w(zi.q)i.‘{-;:—i—’%rﬂ + av (197)

is then used. By allowing the conditional p.d.f.'s f#(yrx,x') and

g*(y' :x,x') to depend on both x and x', the computer obtains ths flexi-

bility he needs to maximize the correlation between the two problems, It

is of course possible to correlate both the x and ¥ spaces simultanecusly,
No matter how the corrslating is done, the optimum g still is given by

a=p % (198)
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The variance if this optimum a is used is
1 2 2
v6"§“1 (1 - p°) (199)

and all the comnments made in Section 9 about estimating a still apply.

Aver%_Sonral Estimtes
Sometines the computer has K estimates 91, cecs ’z\x of %. When

this occurs the computer can use a weighted average

3 g\‘}k (200)

with the condition that as an estimate of 3

Z @ = 1 (201)

e variance of the estimats is

Ve [ Z‘k(‘k - ;ﬂ; | (202)

° Z"‘k‘k"kk'“k‘k'
ik

where Pkt i3 the corrslation coefficient between i‘k and :k' and Py ™ 1.

V is to be minimized subject to the condition that 3 a = 1.

ﬂ-’; =2 ;“""k""&‘ (203)

A D G (204)
kl
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If b,, is an element of the inverse of the symmetric matrix ”Pkk"’k"k'",

ik
then

L4l riek
Zbikpkk'“qu' {O 1y (205)

Iquation (205) can be considersd as defining the b,,» If equation (20k) is
multiplied by bik and summed on k, then

g = Z by, (206)
Hence by the condition on the a's,

A=1/Y b (207)
Ek ik

By substituting equation (206) in (202), and using (201) and (205), it
follows that the minimm value of V is given by

Vel

- 1;(1:& (208)

There are two cases of special interest:

1. The £ are independent (Pyyr = 0)e

1/ 2 for k = k!
By ” b (209)

0 for k ¢ k'

Vel



- uiwi
kel

1

% T
%I V%

2. Thers are only two T e Then letting cz/al = v and

P2 “ Py " P»

Ve

“

2

ciag(l - 0%)

-g'z""l’z :73

-4 i

2
|9 = P99
-

2
& " PR

9 = %0, ¢ "g

2 . 2
o) = T, * I

.= 156 -

(210)

(211)

(22)

{213)

(214)
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2
If o, is greater than oy then the factar —L‘—L! can be
l-2r+y

considered as measuring the amount by which the variance of 21 is cut
down if it is weighted in ancptimmm fashion with ancther random variable
which has the same expected value but a larger wvariance. Curves of this
factor as a function of p and ¥ are given in graph number 1.
Eliminating the Variance of 3(:x)

1I¢ £(x) is simple encugh so that integrals of the type ¥ = j v(x)f(x)ax
can be calculated, then the problem of equation (186) can be reduced to

the following special cases

- f/{z E(a),y] - v[z(ni} g y:x(a)] dydR + ¥ (215)

-

The problem is to determine v(x) so that z¢ is a minimum where

;g - //{z E(R),y] - v[x(a)] - ;}25 nx(&)] dydR (216)
= G I / (x)v(x)f(x)dx + 275 = 272

32 e T 22 | 30x)vix)f(x)dx + 2 75 - 72

If v(x) makes :gn minimum then to first order ;gwill not change when
v(x) is replaced by v(x) + & (x). So
sz = ov - 26 / SGx)v(x)I(x)dx + 2867 - 67 (217)

-2 -/V(x)av(x)f(x)dx -2 /5(:1)&(x)f(x)dx

+ 23 /w(x)f(x)dx - ﬁ/&(x)t(x)dx
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411 the integrands can be collected together. The coefficient

of &v(x) must be zero because &v(x) is arbitrary. This gives for the

optimum v(x)s: ‘
v(x) = z(1x) +z - ¥ ' (218)

Then v(x) can be put equal to 3(:x). . If this v(x) is used, ;E (equation

216) becomes:

:g .z Ez(tx) - 23%(:x) + 282 - 32 ‘ (219)
- ;2 - ':'z(xz) .32
Tg = 5 - 321z) (220)

- .[;_(xpy) - 3(tx)

- ?(xX)

which is the same as (vl - vs) (equation 080) ). Ome of the implications
of the above formla is that if the computer kmows z(1x) approximately,
he can still take advantage of this knowledge without introducing a bias
into the calculaticn so long as he has an exact, or at least fairly
dceurats knowledge, of the expected valus cf this approximate 2(x).

In some cases (Section 6, Part IIT), it my be convenient to do a sort of
raverse problem by:

a. First estimate 3(x,y) directly by any standard tecmique,



|

b. Use the data of ™a" to obtain an approximate z(1x)
and let v(x) equal this approximate z(:x).

ce Calculate accurately v = f v(x)f(x)dx by some mumerical
or Monte Carlo technique. (

d. Re-estimate Z by using the data of "a" in

f6= § i[ﬂﬁan) - v(z,) + 7] (221)
i=1

It would not be reascnabls to estimate v in "e¢" by Monte Carlo unless
the cost of picidng x and evaluating v(x) is much less than the cost of
pleking (x,y) and evaluating z(x,Y). The bookkeeping is very much simpli-

fied if v(x) is restricted to the forma + bx + czz. In this case "c®
? in advance and then "a" can be used to

pick reasonable values of a, b, and ¢, If the form, 3 + bx + cxz, is

can be used to estimate x and

not accurate enough, the range of x can be broken up into intervals, and

a ssparate form used for each interval,

——— e -
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19. Russian Roulette and Splitting (B)

The continmuous analogue of Section 10 is put here for the sake of
completeness though the details are close enough so that the reader
1s referred to that section for them.

A 'genara.l Russian Roulette and Splitting procedure can be described
as follows:

Let the x space be divided into two regions, P’l and Rz. Salect a
valus of x. If it lies in R.l, Russian Roulette is done with proi:a.bﬂity

q(x) = D, (x) (222)

If 4t lies in R, n{x) independent values of y are selected for each

x with

a(x) = W0, (x) (223)
The variance of t he above process is

i
v7 - v° ] T ) (22h)
v, | Plx)f(x)ax - 3 (225)
-2
vix |2 1’: £(x)dx + / %?6'13' £(x)dx (226)
R

2
where the "." sign is used in the last equation because n(x) must be

integral and is thersfore only approximately equal to wz(x). Irc, is
the cost of picking x, Cl(x), the cost of picking y and evaluating
z(x,7), and C the total marginal cost of a sample; then

Ce=c,+ 3} (227)



cl = ﬁl(X)Cl(X)f(x)dx . [Uz(x)cl(x)f(x)d:
2

Ths valus of \ that minimizes C?.-, is

O
w5

with this value of A,

Qo
V7 - Vo + \lco- \IV&C:’

v7_0
T

Vo is an approximately fixed variance; Co is a fixed cost. The

optimum choice of A makes the actual cost and variance proportional to

the fixsd cost and variance. If the computar chooses q(x) and n(x)

in cptimmm fashion, then

0y = Vel /g (x)

Up(x) = a(1x)/\(C; (x)

With this optimum choics,

=C
o

(228)

(229)

(230)

(231)

(232)

(233)

(234)

r
v - “?(,x)cl(x) fx)dx + ‘{:(:x) Cy(x) £lx)ax  (239)
1
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and the ratio of the cost contributed by any x sube-region to the

variance contributed by the same region is

c

xz - Vc’. - g_ (236)
o 7 )

If the sampling is optimum, the region R'.L is chosen as largs as possible

as determined 'ai the equation,

- _
2 8°(1x :
A -c;rx—yz : 1 (237)
As mentioned previously, (236) and (237) are really simultaneous equations
for \ and B‘l'

In many cases it is inconvenient to use Splitting and the computer

uses only Russian Rouletts. In this situation,

q(x) = \(x) xin Ry (238)
n{x) = 1 x in R,
1 ;2 (2.3 2
Vo=V, + % = f(x)dx ¢« [ (:x)f(x)dx (239)
where v, 452(21)1'(1:)6: - 32

C=C +12 )[‘\U(x)cl(x)f(x)dx + ACI(X)f(x)dx (2Lo)

The optimum A\ is given by

4 C, * fcl(x)f(x)dx F(;x £(x)dx
22 - 2 (21)
v, 4: (:x)f(x)dx U(x)C, (x)£(x)ex




-
C, * cl(x)r(x)dz L%&%(x)dx'

é?(sx)f(x)dx - 2 ,{fm%(x)f(ﬂd’

-2
(sx)
. Lfva%-«x)«
7 {U(x)cl(x)r(x)dx

1

where the approximtion a.sauns'a that the integral over Rz is replaced by
an integral over all space. If U(x) is chosen in optimum fashion,

U(x) = ] sﬁ(sx)/cl(z) (242)
2. & '
\¢ ® f,; (2h3)

and the region 9.1 for Russian Roulette can be taken as being detarmined by

2 22 '
Lzslé;xz 'tc;’ (sx) < 1 (2Lls)

hpplication to Particle Diffusion

A special case of some intersst involving three random variableas
(X,W,M) arises in particle diffusion problems. X is a gensralized position
variible which reprssenta the position and momentum of the particle. W
is a pseudo weight that is assigned %o the particle, and ‘which changes as
the particls jumps from point to point. M is the final weight of ths
particle divided by the current weight. It is convenient to think of it

the cther way, as a factor which multiplies the current weight when the

— - e— — -



random walk is terminated. The function whose expected value is desired
is the final weight of the pnrticlc} so

z(x, ¥, m) = wm (2u5)
vhere if ordinary sampling were being done the m would be independent of w.
Rowever, if the w happened to be very small ons would be willing to sampls
R rather inascurately if it saved some costj if it were large one would
vant to sampie m quite accurately even if it were expensive. This is thus
a patural problem on which to use Russian Roulette and Splitiing.

The regions Ry and R, will be defined in the (x,¥) space and the
decisions of Russian Roulstte or Splitting concern the number of m values
that are to be picked for an (x,w) value.

In discussing particles it is convenient to changs the language
slightly. Instead of speaking of picking n indspendent valuss of m for
esach (x,w) in region Ry, the partisle is said to split into n independant
particles each of weight w/n. Similarly in region R, if the particls loses
the Russian Roulette it is said to have died (or disappeared); if it wins
it is assigned a new weight, w/q(x,¥) and its random walk contimmed.

In the case of most intersst the p.d.f, for (X, W, M) (after the Russian
Roulstte and Splitting has been done) has the special from, g(mix)f(x,w);
that is the conditional p.d.f. of m is not dependent on W. (The plausi-
bility of the assumption is discussed ‘belaw.) With this assumption,

22(1x,u) = u?:z(.-x) (246)

P(1x,w) = w2 {n2(sx) - 72(x) (247)
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Sinece the cost of picking an m value is independent of w, the optimum

choice of q{x,w) and n(x,w) is given by

q(x,w) = w !Ei.a.}
2 -2
aCesw) = m\j._(_{?_ri_l

and regions Rl and 32 are detarmined as before by the appropriate inequal-

(248)

ities. If the particle is in/R._l and happens to survive the Russian Roulstts

it 1is assigned a new weight
C, (x)

1\ 1
¥ e ET}:TUT - I ( x) (2&9)
m \3

If the particle is in R.z than each of the n independsnt particles is given

a weight.
v

L )]
(250)

€y (x)

b [

n(:x) = 22(sx)

In both cases, the final weight of the particls is independent of the
original weight and is a function of x only. {This seems to be, in zsneral,
one of the criteria for a good sampling scheme for particle diffusxion probe
lems.) It is because ths weight of the particle after collision is indepen=-
dent of the weight befors collision that m can be taken to te indapendent

of w.
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Truncating Sample Series

Sometimes in doing a Monte Carlo problem instead of getting a single
number for the estimate from a single sample, one obtains an infinite
series; more precisely each sample generates a process for calculating an
infinite series term by term, and it is the sums of these series which are
to be averaged in obtaining the {inal estimate., This occurs most often
in the Use of Expected Values.

The computer is then fased withthe problem of terminating sach of the
sample seriga. This can be done by summing each series to a fixed number
of terms or it can be done by summing until a term gets smaller than some
previously assigned amount. Both of these methods are inefficient as ons
is then faced with either calculating a number of very small terms or
truncating too soon and introducing an unkncun bias into the estimate.

A much more effective method of terminating such sampls series is
made possible by the use of Russian Roulette. One can simply play the
supplementary game of chance as soon as the terms in the series begin to
get small, If a term fails to survive the supplementary game the series
is terminated right then and there; if it survives, the weights of all
subsequent terms are multiplied by the proper factor and the term by term
summation continued until a new term beccmes small., In this vay the series
can be terminsted in a completely unbiased fashion and yot very little
effort is spent computing smll and insignificant numbers.
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PART IX

INTEGRAL BEQUATIONS
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7TT INTEGRAL EQUATIONST

Introduction and Definitions

The treatment of intsgral equations will follow as closely as
possible the treatment of integrals in order to emphasize similarities
and differences. Again there will be a certain amount of paraphrasing,
but this time an attempt will be made tc minimize it.

The problem is to estimate

zZ= f/z(x,y)x(x,r)dxdy . (1a)
A
by Monte Carlo. M(x,y) is an unknown function which is determined by
the integral equation
M(x,y) = //X(x,yxx' »7 M(x',y! )dx'dy! + Mo(x,y) (1v)
A

3(x,¥), K(x,ytx!,7'), and Ho(x,y) are known. K(x,yxx‘,y') is called
the kernel of the integral equation. The above equation is known as a
Fredholm equation. It arises naturally in many applications in physics,
mathematics, and engineering. Associated with the Fredholm equation is
anothear equation known as ths adjoint equation.

S(x',y') = [/s(x,7)R(x,y:x',7 )dxdy + z(x',¥'). (2a)

It can be shown that

L /ﬁ‘o(" , TS (x, axtdy? (2v)

1 The rsader is reminded that judicious sidpping (or siimming) may be
advisabie. In most sections more details ars given than are needed for
applications.

The mathematician may find the chapter clsarsr if he resalizes from
the ocutaet that we are here studying z Markoffian process in the threse
dimensional spacs (w,x,7). The process is specialized so that it is
still Markoffian in any of e averages cver W,

It should be obvicus to the reader that almost anything said in this
context about integral equations applies also to matrix squations.

-
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S(x',y') is now the unknown function. By miltiplying Bquation (1b)
with S(x,y)dxdy and Bquation (2a) with M(x',y')dx'dy' and integrating,

it is easy to show that

i-T. (3)

There are thus a.iways two different sets of equations which can be used
to calculate z.

It is convenient to discuss the problem in terms of a random walk
in which a particle jumps from one point to another, changing its weight by
a factor which may depend on the initial and final positions every time it
jumps. The points to which it jumps are called collision peints. If it
ever jumps outside a presassigned area, A, the particle is said to have
been trapped or die and the random walk is terminated. It will be shown
that Z can be interpreted as “he expected weight that jumps into a particular
trap state and can be sstimated a la Monte Carlo by performing N random
walks and averaging the trapped weight of the N pa.rticlea.l

Most ¢f the applications of Monte Carlo to integral equations have
actually been concerned with studring random walks. The author would,
however, like to emphasize that for the purposes of this chapter their
introduction is an expository device and does not limit in any way the
class of integral equntichs which can be treated.

Before showing the connection between integral equations and random
walks some definiticns are nesded:

p(x,y:x',y') is the p.d.f. for the new non-trap position (x,y) of a

particle that was at (x',y'). If jp(x,ytx',y' )éxdy
is < 1 then the particle has a non-:oro probability of

Jumping directly tc a trap state from (x',y').

1 See Secticns on"Realization® and "Collisions Formulation" for a more
detailed description of the random walk.
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p(ex',y') =1 = //p(x,y::c',y')dxdy is the probability that a
pmicle at the point (x',y') will be trapped instead
of jumping to a new point in A. In some cases p(:x',y')
will be taken less than 1 = /fp(x,y:x',y' )@; in which
case it is to be interpretedAas the probability of jumping
to a given one of several trap states.
a(x,y:x',¥y') is the factor by which the weight of a particle is
multiplied if it jumps from (x',y') to (x,y).
m(:x,y) is the factor by which the weight of the particle is multiplied
if it jumps to the trap state from (x,y).
| wo(x,y) is the initial weight of a particle that starts at (x,y).
The weight can have either sign, but in most problems it
is positive,
W, is the weight of the particle at the i'th collisicn. .
1 20,1, eue, I.
Welw m(:x.I,yI)wI is the weight of the particle on being trappea.
fi(w,x,y) is the p.def. for the weight and position of a particle at
the i'th collision. /ff fi(w,x,y)dwdxdy is the probability
that the particle has ﬁot been trapped by the itth
ccllision,
P, (x,5) = / £, (w,x,y)dw is the p.d.f. for the pasition of the particl

at its i'th collision.
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Hi(x,y) = fwfi(w,x,y)dw 1s the expected weight (actually weight
density) at (x,y) on the i'th collisiton. The expected
weight of the particle itself is M, (=,7)/P, (x,7)."

Qi(x,y) =/ vzfi(v,x,y)dw is the expected square weight at
(xyy) on the 1'th collision. The expected square
of the weight of the particle is Q,(x,y)/P,(x,y).

gy (wix,y) is the conditional probability that a particle
that starts at (x,y) with weight cne, is trapped
in exactly i collisions with weight w.

Ri( 1X,y) = ./'gz(mx,.y)dw is the probability that a particle
that starts at (x,y) is trapped diresctly after the
1'th collision.

Si(zx,y) = fvgi(v:x,y)dv is the expected weight that is
trapped after the i'th cocllision given that the
particle starts at (x,y) with weight one. The ex-
pected weight of such a particle when it is trapped is
8, ( :x,y)/ai(x,y).

‘ri(:x,y) = J/ vzzi(vsx,y)dv is the expected square weight that
is trapped after the i'th collision given that the
particle starts at (x,y) with weight one. The ex=
pected squars of the weight of the particle when
trapped is 1‘1( :x,y)/Rl( 1Xy¥)e

P(z,y) = i?i (x47) is the expected mmber of collisions that
:ho particle makes at (x,y) before it is trapped.

® The somewhat stilted language is used to emphasize the difference
between the notiocn of "expected weight of a particle,” given that it
is at a point and "expected weight" at the same point. The former i
scmetinmes called the conditianal expected values the Latter is equal
to the former times the probebility of the particle being thers.
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@ ,
M(x,y) = Z!n(x,y) is the total expected weight at (x,y), and
)
sinllarly for Q(X,Y)’ R( 31,1)) 5(3117)9 and T( 31,3)-

- - —
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Derivation of Integral Equations

The only wey a particle can get tc the point (x47) 40 L (1 > 0) collicions
is to be at some point in A on its i=l'th cellisiorn and then jump to

the point (x,y% Therefors,
Pi(xay) =2 7 p(xy57:x!yy! )Pi.l(x'aY' Jaxtay! . (4a)
A

Summing both sides from 1 to
@ @
%Pi(x,y) ={f p(xyy:x? ,y')§ P,_; (x*yy!)ax'dy" (4b)
®
= -AO.P(hY‘x"Y')ZPi(X"Y')dX'dY'
°
=.{fp(x,y:x',y')P(x',y')dx‘dy' ’
® o
bt gl’i(x,y) = 3P, (x,7) - P (x,) (5)
)
= P(X’y) - PO(Z,Y) ’
8o . P(xyy) =..A0'p(x,y:x'_,y')l’(x',y')dx'dy' + Po(x,y) . (6)
Equation (6) is intuitively plausible. It states that the expected
number of collisions at (x,y) is equal to the sum of the probabilities
of all the ways in which a psrticle can have a collision at some other

point and then jump to (x,y)y plus the probability that the particle
had its first collision at (x,y).
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Sinilarly it can be shcwn that

M(x,y) ={/ﬁ(x,y:x',y')p(x,y:x',y')M(x',y')dx'dy' + M (z,5) {7)
Qxyy) =.A,/'/mz(x,y:x',y‘)p(x,y:x',y')Q(x‘,)")dx'dy' +Q (x,7)  (8)
where M (x,7) = w_(x,7)P_(x,7) ()
Q,(x,7) = w2(x,7)P_(x,7) | (1)

If m(x,y:x',7'), plx,7,x',7!), vo(x,y), and P_(x,y) are chosen sc that

K(xy5,x'yy') = m(xyy:xtyy")p(x,y:xt,y') ().

v (%y7)P (x,7) = M (xy7)

then Equation (7) is identical with Equation (2). This 1s, of ccurse,
the identification which is intended.

The expected trapped weight is given by
,{f&(x,y)p( sX,y )m( :x,y )dxdy .
Therefore, if m(1x,y) is %aken to be
a:xyy) = 2(x,y)/p(:x,7) , (12)

the expected trapped weight is z (Equation 3) which completes the
identification.



Equations can alsc be written for R(:x,y), S(:x,y) and T(:xy¥y)e

For example,

R, (:x,y) = {/Ri_l(:x' 17" )p(x! 3! :x,y Jdxtdy? (13)
because the probabllity c¢f being trapped in exactly i collisions is
equal tc the probabllity of jumping tc somewhere else in A, times the

probability of being trapped in i=1 collisions from the second pcint.
Frem Equation (13) it is easy to obtain

R(:x,y) =.A[/R(:x',y')p(x',y':x,y)dx‘dy' + Ro(:x,y) (14)
Ro(:x,y) = pl:x,y) »

This equation is also intuitively plausible., A particle can be
t:rapped in two ways. It can first jump to some other point in A and
then eventually be trapped or it can jump directly into the trap state.
Equation (14) states that R(:x,y) is the sum of the probabilities cf

these mutually exclusive events. DBecause
R (:x,5) = p(ixy7) = 1 =/ p(x!,y'ix,y)dx'dy! ,
A
it can be showr that A(:x,y) = 1 is a solution of the equation.
If there were differant types of trap states and Ro(xx,y) were the

probability of jumping directly intc jJust one of the trap states,

+hen Ro(:x,y) would be lass than

1 -{/p(x',y'=x,y)u'dy',

and R(:xyy) would be less than one. In practical problems, this

situaticn 1s the common one.
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Equations for S(:x,y) and T(:x,y) can also be written

8(:x,y) 3{/'5(:::',:[')m(x',y':x,y)p(x',y‘:x,y)dx'dy' + 8 _(:xy5)
5, (ixyy) = plexsy)mlexyy)

T(:2,3) 3{]"1'(::',;7')nz(x‘,y':x,y)p(x‘,y':x,y)dx'dy' SACE
T_(:xy7) = plezsy)a’(ixsy)

It should be noticed that Equations (14), (15), and (17) are adjoint
respectively to Equations (6), (7) and (8).

(15)

(16)

(17)

(18)

= e a— - —— -
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Realisaticn of Integral Esuation by Monte Carlo

The ¢ of Equation (la) can be estimated as follows:

a. An (x,y) is picked from Po(x,y) and a weight v = wo(x,y)
assigned to the particle. ,

b.* If on the 1'th collisicn the particle is at (xi,yi) with
welignt Vis then the computer first picks raadomly between
the alternatives of being trapped[?robability p(:xi,yiﬂ
or of having ancther collision [probabmty [l - p(:xi,yi)}}.
If the first alternative materializes the particle is
assigned a trapped welght, W = n(:xi,yi)u1 .

c.* If the particle is not trapped then an (xi+l’yi+l) is

Plxpay¥3ey 32003y
1l- p(:xi,yi)

?

picked from the normalized p.d.f.,

and & velight, w, ., = m(xi+l’yi+l:xi’yi)“i’ assigned to
the particle.

d. Db and c are repeated until the particle is trapped. If
N perticle histories are traced and their weights when
tirapped denoted by Hl,...Hh,...Uh respectively, then

N

2 ¥y

n=1

W=

2

is an estimate o z.

* In many problems it ia more natural to describe (b) and (c) as
follows: an (xi+l’y1+l) is picked from p(xi+l’yi+l:xi’yi)' I

(xi+l’yi+l) is in the trap state a weight W = '(:xi’yi)"i is
assigned to it. Otheruise the weight w,,, = m(xi+l,yi+l:xi,yi)vi
asgigned to the particle.
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Because of the existence of adjoint equations, two different
integrals can be written for P ’ H‘z, etc. For instance,

22¥ =,A[/'H(x,y)p(:x,y)n( :x,y )dxdy (19)
= [P (25 ) (x,7)8(:x,7)dxdy . (20)
A

The first integral can be read as saying that the expected
trapped weight is equal to the expected weight at any point, times
the probability that the particle will be trapped, times the factor
by which the weight is multiplied if the particle jumps to a trap
state, all this suzmed over all possible points. The second integral
says that the expected trapped weight is equal to a similar sum of
the expected weight starting at any point times the expected factor
by which the original weight is multiplied when the particle is
finally trapped.

Similarly,

W ={]V(x,y)p(:x,y)n2(:x,y)dxdy (21)

=.‘ﬂ' P, (xy7 2 (x,3)T( 12,7 Jxdy (22)

- -~ —



Sampling from the Initial Distribution P o(x,y)

Equations (19) to (22) indicate that if any of the techniques of
Part II were to be applied to sampling the initial position of the
particle, then the following correspondencs,

£(x) —>» Po(x.y)

3(:x) —> R(ix,5) = v (x,7)8(1x,y) : (23)

2(1x) = W(ix,y) = W lx0105,7),

can be used in designing the sampling. If it is desirable to use tae
sampling techniques only on the x coordinate of ths initial position
cf the particle, then the analogy is given by:

£(x) —=> P (x) = J Py (x,7)dy
z(1x) —> W(ix) = jwo(x,y)s(:x,y)l’o(yxx)dy (24)

2(12) = W(1x) = [wd(xy)1(x, 7P (nx)dy.

Thus, Jjust about all of Part II can be applied to sampling from
Po(x) or Po(x.y). Because T(:x,y) depends on p(x',y':x,7) and will
change if the transition probability is changed, the techniques and

ideas of Part II must be modified before being applied to the integral
equation as a whole,
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The Collision Formulation

The whole formulation of the problem of solving integral
equations by Monte Carloc can be changed slightly to make it locok
like the situation considered in Section A of Chapter II. The
following lddiﬁoml definitions are needed:

qy = /P, (xy7)p(:x,7)dxdty

= ﬂalex,y)l’o(x,y)dxdy

P,_(xfy)P( :Xy¥)
9y

hi(x,y) =

i
qyB, (wyxyy) = :y‘... {f&E; -, J:l m(xj,yj:xj_l,yi_l):l P (x,»y,)
1-1 °

1
T [P(‘r’yz’*:-l”:-l)dﬁ-l d’r-l]

rel :

where the subscript on A indicates which (x,y) are
being integrated and 8 ] 1s the Dirac delta function.

hi(w:x,y) = hl(v,x,y)/hi(x,y)

q is the probability that the particle is trapped on its i'th collision.
hi(x,y) 13 the p.d.f. of the (x,y) from which the particle jumped when
it wvas trapped. b, (wyx,y) is the sinilar p.d.f. for (wyxyy)e The
sampling problem can now be defined as followa:

1. 4n { value is picked from 9

2. An (xy3) 1s picked from h,(x,y)
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3. A w is picked from hi(wzx,y)

4e The function W = wm(1x,y) is calculated
The average value of the samples W's {s an estimate of Z.

Unfortunately the q are noct known expliciily, and the only
way in which { values can be picked iz to sample all the previous
{ values. For most problems focusing attention on the collision
number rather than the position of the p_article is a highly a;'ti-
ficial and non~productive point of view. However, when the T:i(:x,y)
are strongi.y dependent on the 1 and not on(X,y)then this point of
view can be useful. In this report the main application of the
collision formulation is in deriving formulae.
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1. Straightforward Sampling

The sampiing procedure described in the previous sections is
not really a faithful analogu; of most physical situations. In the
typical particle diffusion problem there are alternative wys, besides
jumping to a unique trap state or states of interest, in which the
particle can terminate its random walk. Some of them correspord to
uninteresting trap states, while others correspond to a special type of '
trap state in which the particle simply disappears. If the latter event
oecurs, the particle is said to have been absorbed. If it does not the
particle is said to have survived the collision. 1In this physical
situation ths weight of ths particle doss not changs as it juups
from one point to another or to the trap state; m(x,y:x',y') is not
a weighting factor but a survival probability, and therefors
necessarily less than one. m(:x,y) is the product of a survival
probability and some function of the marticlss coordinates; for
example the energy. If the survival or absorption of a particle is
treated as a random event then the quations for P(x,y), 'i(:,y), R{:x,7),

and T(1x,y) cease to have any meaning; the equations for M(x,y) and

S(:x,y) ares unchanged in form, tut ui(x,y) 18 now to be interpreted

as the probability of being at (z,y) at the 1'th colldsion, and [z.f na(:x,7)

1s a probability of survival] §, (x,¥) is the probability of the particle
being trapped directly after its i'th collision if it starts fram (x,7).

Under this interpretation the particle has a weight of one if it
gets to *he trap state and is defined as having a weight of zero

if it fails., If primes ars used to distinguish the physical random

- A e -



walk from the previous one, and P' is the probabilitj of getting
to the trap state, then
z =W
=P .1+ (1-P') .0

= Ppt
2 2

= P' L] 12 + (l-P') ° 02

= p¢
and the variance 1is

= pt = p1?

T-32.,

3
)

In the previous formulation the variance was given by:

v, = Qxyy w2 (xy3)p( s xyy dxdy - 22 o

V-V, =ﬂ'[u(x,y)n(:x,y) - Q(x,y)nz(:x,yﬂ p(:x,y)dxdy .

It is easy to see that V] - V, > o. nz(:.x,y) is less than m(:x,y)
because m(:x,y) 1s less than one. Similarly, from the fact that
mz(x',y'zxn’) < m(x',7':x,7), 1t can be deduced that Q(x,y) < M(x,y),
so Qa° < Ma and V, < V1.

The formulation with weighting factors corresponds to replacing
the random survival of the physical random walk with a weight that is
the expected value of the survivel probability. This is an example of
the application of the use of expected values and therefore it is not

surprising that there 1s a reduction in the variance. There is also

(25)

(26)

" (27)

(28)



an increase in the expected cost of a single history, for if the
particle wvers occasionally allowed to terminate ita walk before
jumping intc the trap stats then the average histery would involve
fewer collisions and be less work to cemputs. The section on Russian
Roulette discusses the inter-play of these two factors in more detail.
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2. Importapce Sagpling

The problem is to select the six functioms p(:x,y), p(x',y':x,¥),
P_(xy3},2éx,7), a(x!yy':x,3)y and v (x,y) so that the velght of a
particle vhen trapped is an estimate of 3, and so that W is a
minimm. The condition on W is satisfied ir

z(:x,y) = z(x,3)/p(:x,¥) (25a)
m(x'yy':x,y) = K(x'yy':1x,7)/p(x! 7" 1x,y) : (29b)
uo(x,y) = Ho(x,y)/Po(x,y) ’ ’ (29¢)

and only the three p.d.f.'s are arbitrary.

Under these circumstances the equations for M(x,y) and S(:x,y) are
given by (1b) and (2b). The equations for Q(x,y) and T(:x,y) are ob-
‘tained by substituting Equation (29) into Equations (8) and (17)

respectively:

M (x,5)
- K 1) . . 'y
Qxyy) ./f 5 : Ty Qxt,y!)ax'dyt + -—(—-)-P: = (30a)

_ . 2(x',y': 2(x,7)
Nexy) =7 Toxtyy') EEIEI ecay + 024G (300)

and from Equations (21) and (22)

v =./_'/Q(x,y) ; :y dxdy (31a)

}‘2 ’7)
-f/' T(:x,y) -—(—-)' dxdy (31b)
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Bmuac;s- 923'0, the minimum value of;z- isﬁz. If this value
is achieved then the variance 1s zero and the sampling is perfect;
a sample of cne gives the correct answer. If K(x,y:x,y), Ho(x,y),
and z(x,y) are all positive, a zerc variance random walk can be
obtained and is given by the follcwing choice of the three pedef.ts:

p(:xyy) = 2(x,y)/8(:x,y) (32a)
Plx!yy*:xyy) = S(:x!,y* )K(x! 7" :xy7)/5(:x,y) : (32b)
Po(x,y) = S(:x,y)ﬁo(x,y)/:. : (32¢)

By using Bquation (2b) for S(:x,y) it can be shown that the
p(:x,y) and p(x',y':x,y) given above satisfy p(:x,y) + //p(x',y':x,y)dx'dy’ = 1.
Similarly Equations (la) and (3) guarantee that AP (xyy)dxdy = 1.
Substituting into the equations for Q(x,y) and T(:x,y):

. . M (x,5) _
Qxyy) = SELFLLEURTY q(xtytaxtey! + gimey 3 (338)

T(:xyy) = T(:x',5') E(x! ': ,;s(:x ) dx'dy* + z(x,y)S(:x,y) (33v)

Solutions of these equations are given by
QUx,y) = 3M(x,y)/A(:x,y)
T(:xyy) = 52(:x,y) ’
for as can ve verified by substitution, Equations (33a) and (33b) then

reduce to Equations (1b) and (2b) respectively. Either of the above
solutions when substituted into Equation (31) give

W = 32 (34)
3? ¢
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Even though a great deal more than just the answer, 3, must be
knoun befors a zero variance sampling technique can be designed,
the result does indicate that the variance can be cut down if it is
possible to exploit some previous knowledge about the problem.

It is interesting to examine scme of the details of the gzero
variance estimate. Any particular particle history can be represented
by a set of numbers. ("'o’xo’yo’"l"_l.’yl"""1"1’71"'1"1’11) vhere
the (xi,yi) are the successive positions of the particle and the w,
are the weights at the 1'th comsioﬁ. The sample estimate is

L n(:xI,yI)\iI. (35)
If the optimum importance sampling is used,
uy = K (2,3 )/ (x 57,) | (36)
= i4(ix,7,)s

vy ® mlxgyyixy gaTy g vy (37)

o Mapyyizy g3y )
PRy s7y 7%y 07y ) i1

_ S0y 107y )
: >4 wi-l
197y
S(:x,_4s¥,_q) S(:x, .9y _2) <
= [ ) [ X N J
STixyyy,)  SCxppay, 3] STexgyyg)

= 2/8(:z,,y,) .
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Because of the successive cancellations, the weight vy does not

depend on the history of the particle but only on its position. It

will turn out in the section on Russian Roulette that there are other

wvays bemides importance sampling in which this condition occurs,
m( :xp,yp) = 3(xpyy7)/p(ixpyyy)
= s(sz’.’fI) )

= valsxp,yy)

=
|

STy Stegary)
s 4254

% .

It is customary in engineering practice to refer to S(:x,y) as
the importance or influence function. As can be seen from Equation
(32), the sampling is taken proportional to this function. HNormally
S(:x,y) is not kmowa and an approximate importance function, I(x,y),
must be used. The sampling p.d.f.'s then becomes

plix,y) = 2{x,y)/(x,y)
PiX* ¥t ix,¥) = I(x',y' JK(x* )3 :1xyy)/C(xyy)

Po(::,y) = I(x,y)Ho(x,y)/Co ’

where C(x,y) ={I(x',y')x(x‘ W' :x,y)ax'dy! + z(x,y)

and c, =,{I(x,y)l(°(x,y)dxdy

ars required for normallzation purposes.

(38)

(39)

(40)

(4)

(41b)
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The equations for Q(:x,y) and T(:x,y) now become

I(xyy)Qx,y) ={/K(x,y=x',y')C(x',y‘)Q(x',y')dx'dy' + C M (x,y) (42a)
%-&fﬁl = {/%;—%;—} K(x!yy':x,y)dxtdy! + z(x,y) . (42b)

If the substitutions
Uxyy) = C M (xy3)/I(xy¥) | (43a)
T(:xyy) = C(x,y)s*(:x,y) ] (43v)

are made, Equations (4{2a) and (42b) become:

M (x,3) = JK(x,y:x!,yt) %g—;i%:—} M*(x?,y!)axidy? + Mo(x,y) (44a)
S*(:x,y) = //5%(:xt,y' K(x!,y!:x,y) (I" :’y axtdyt + z(x,y) . (44b)

If the optimum sampling had been used, M*(x,y) would be equil to
M(x,y) and S*(:x,y) would equal S(:x,y). They are not equal to the
desired functions because in effect, there is an extra multiplying
factor, C(x,y)/I(x,y).

For this approximate importance sampling, using (3la) and (LO)

w2 =.A&ﬁ(x,y)z(x,y)0(x,y)dxdy (45a)

' c
= Co.,‘&ﬁ'(x,y)z(x,y) T(x,y dxdy

z*
- Coz ]
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or using (31b) and (LO)

-— M (xyy)
W Co.[/'f(:x,y) Ix:y dxdy (45%)

C, 8% :x,y)Ho(x,y) % dxdy

-
Coz .

; is the ordinary expected weight of trapped particles when the
weighting factors of the random walk have the additional factor
C(xyy)/I(xyy). The variance is

v, = Ca - 2. (46)

The formula COF for W is exactly what would have been ex-
pected. If a random walk uses the p.d.f.'s of Equation (40) and the
weighting of (29) then

W = c [ C(x ’y ) see C(xi"l’yi-l) (47)
i I(Xogyo) I xl’yl I xi’yi
W=mn( :xI,yI)wI (48)
(o} C(x "y ) C(x 24 )
. Q [o] ses I-l I‘
T Txy,)  Ixy57,) IENRT) Clxpsyy)
For the z* random walk with the same p.d.f.'s
m o Clegyp)Clay) Oy gy ) O0Ey gy ) (29)
17 Toqy,)  TTx,7, JT0qy,) Ty 197y y /1 xgoy)

-2 I(xl,yl)

iCO
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%
'

= m*( :xI,yI)\ri

QYI)

= ﬂ( ijyI (xI,yI; I

_ Cz(xI,yI) -
I(xI,yIJ I

Cz(xI,yI)uf/C
VL.

o

Therefcre COW' = Hz
Cw* = W
°
= C 2% .
The equation does, however, indicate how the variance can be

estimated for an importance function I!(x,y), when an I(x,y) is

actually used in the calculation. The weight w

, is multiplied by the

factor
o] ct
al = '(x ) (ﬁ,yl (xy_1973_3)
I x’y ’yl I x l’yil
and the trapped weight W by the additional factor C'(xI,yI)/I'(xI,yI)

- C'(xc,yo) . C'(xl,y;) coe C'(xI,yI)
W= I'[xo,y°1 i k21 I'sz’yI}

(50)

(51a)

(51b)

(52a)

(52p)
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The sampling variance, if I'(x,y) had been used instead of
I(x,y) is

v o= c;ﬁ"' -z .
Estimating the Importance I(x,v)
Method I.

Ususlly the most convenient method for obtaining good import-
ance functions is to try to calculats S(:x,y) by scme nppfoximto
analytic, mumerical, or experimental procedure. It i{s somewhat
casier to do this than might be thought because only relative values
of the function are needed. If thers is a consistent bias in the
approximate calculation, even if it 1s large, it may cancel itself
out for the purposes of sampling. In many cases the computsr has
sufficient intuition about the érohlen to be able to guess a reascn~
able I(x,y) with very little work.

Method II.
The sampling 1s set up sc that the pedef.'s have parameters in
them. The parameters can then be varied until the estimated value of

Hz is sufficiently small. While W does not change vhen the parameters

are varied, the author has found that there ia usually sufficlent

positive correlation between V= 92 - ? and ?, that ﬁ/'? is a better

guide than just 7.

Method III.

Method II can be used in a little mors sophisticated manner if
the results of Equations {53), (54), and (55) are applied. It is
usually relatively cheap to carry along with the sampling for ths

(53)
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answer, some additional macninery which will enable the computer to
estimate what the variance would have been if a differenf._ import-
ance function had been used. As scon a8 information about the
sampling characteristics of different ‘mportanca functions is obe

tained, it can be fed back into the problem.

Method IV

It is perfectly feasible to interchange the roles of the normal
and adjoint equations, Sampling can then be done cn the adjoint
‘equation and S(:x,y) estimated. This estimated S(:xX,y) can then be
used to improva the sampling that estimates M(1x,y) and vice versa.
If necessary the iteration procedure could be carried through mn.ny'
times. As far asthe author knows Method IV has never been used in
a systematic fashion. The first three have.

Importance Sampling Only In The x Space

It is sometimes desirable to separate the x and y spaces and do
Importance Sampling only on the former. The simplest thing to do is

to take I(x) proportional to an approximate 5(:x) where 5(ix) is a
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suitable average of S(:x,y). This corresponds to the sampling pro=-
portional to 3(:x) in the seccnd chapter and like that sampling is
by no means optimal. However, the description of the optimm
sampling for the x space only is extremely non-intuitive and while
a short discuseion is included here for the sake of completenesas,
the equations that determine this optimum sampling in the x space
do not seem very useful.

The Greens function X(x*,y":x!,y') is defined by the equation

Clx!

Ty dxdy + (54a)

E(x",y":x',y") ={f E(x",y":x,7)K(x,y:x'y")
3(x"=x')8(y"=y').

By multiplying Equation (44a) by K(x* 3y":x,y) and integrating over
(zyy), the equation

M (x*,y") = -g-&;ﬁ;-} /.'/E(x',y'zx,y)xo(x,y)dxdy (54b)

is obtained. By substituting Equations (41b) and (54b) into (45a) an

expression for Hz

Vs U ety iy Exiyaxt 7 M (et oy Jamayextayt (55

can be written in terms of I(x,y) whers E(x,y:x',y‘) depends implicitly
on Iix,y) through Equaticn (54a). This dependence is very complex,
even uhen I(x,;) 1s specialized to be a fumction of x only. Therefore,
when the condition that makes W a minimum is derived, the equations
are relatively intractable and non-suggestive.
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3. Systematic S smpling

The most important application of systematic sampling is o the
sampling of initisl pocints. This subject 1is discussed in the section
or sampling Po(x,y) and also in Section 6 on correlation. The die-
cussion which follows concems‘ the much less important but still
interesting subject of the systematic sampling of the trans:l.tiﬁxi
probetilities.

A surface xj(x,y) can be defined by the equations:

plx!1x,y) = /p(x',5':xyy)dy! (56)
xj ‘
S plxtixyyiext = 1—'{,-]'3 (57)
If systematic sampling is used when picking values of x, then the x,

‘values will fall cn one of these N surfaces x (xiol’yi-l)' However,
since scme of the N particle histories will have terminated before
reaching the 1'th collision it is not true that each one of the
surfaces will have an X valus on 1t.

The reduction in variance dus to systematic sampling can be
calculated exsctly as in Section 15 of the previous chapter. 4 random
variable Ui is defined which is equal to the weight W of the trapped
particle given that the particle had at least i-1 collisions before

being trapped. Then

Uy Cawy_q5%y 197y 79%9Yy) = wy_qm(x,»7y 3%, 197y )8(s%057,) 4F (xg53,) 1n A (58)

= w,_qa(:x,_ 393, 7) 1f (x;,5,) in trap state



2 2 2
Ui(wi-l’xi-l’yi-l’xi,yi) = i (X7 % 107y g )T0Gx0y,) A2 (xy7,) 24

2

The p.d.f. for ("1.-1"1-1’71—1"1”1)
18 £, 3 (g _10%y 197y g IPURg o7y 1%y 197y ) /Py

where P, " e/ fi_l(v,x,y)dudxdy
= ./f?i_l(x,y)d.niy

is the probability that a particle will have an i-lst collisicn. I-Ii
and U‘i can be calculated by integrating this p.d.f. against the
conditional expected valuss defined in Equations (58) and (59). It

is also necsssary to define the expected value,
Ui(zj), of Uj.(:vi-l’xi-l’yi-l’xi’yi)

on the equiprobability surface xj(xi-l’yi—l)‘ While the surface is

defined independently of the collisicn mumber, I-Ii(:J) depends on it
because the p.d.f. is a f:mction of i.

- m -
Uy (:3) = _.Q/"Vi L=y 147y .O/:':.-l“ E"i—l'xx-l’?i-l’ﬁ(‘1-1’-" 1—1)’Y1]

f:_] (W:_; ’xH ’31_1)

P 1 P [f‘j(‘ BN 1-1]

= wi_lnz(: i—l’yi-l) ir (xi’yi) in trap state

(59)

(60)

(é1)
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where S'K' is defined as equal to SK if (xj”i) is in A and is equal
to =(: 1—1”1—;)9(: 1—l’yi-l) i (xj,yi) is in the trap stats.
If Nl particles had an i-lst collision and ordinary sampling
was used then the variance of the estimate of N; El would be ll(Ui - ﬁi).
By a trivial modification of the technique of 3B it can be shown that

- -2
this variance is approximately reduced by an amcunt Hiﬂi(:j) - Ui] .
Therefore the variance of the original sampling problem is reduced
- - 12
by Pi_l[ui(:j) - ui] .
If systematic sampling is used on y, then a surface yk(xi-l’yi-l’xi)

1s defined by
Py =y 197y 0% ) = Plxpsyyexy 93y o M/p(xgixy 9y, y)

Te(Zy1974000%)
k -
p(yizxi_l,yi_l,xi)dyi = —Tl@ k=1, 24000y §

and the exrected value of U(Wi-l’xi-l’yi-l’xi’yi) on this surface by

- ®©
Uy(ek) =/ axy oz, jdy, S E‘L’Yk(‘i-l’yz-l":.ﬂ "["1"}:(‘1-1’7 1-10%y)?

(64)

X197 1—1] My o (xy 907y

The reduction in variance is Pi_ll:ui(zk) - T!’J 2 . If systematic
sampling is used at several points in the particles history then the
reductions are approximatsely additive.

(62)

(63)



4e Stratified Sampling

As in systematic sampling the important application is to the
initial positions of the particles. This subject i3 discussed in the
section on sampling Po(x,y) and also in Section 6 on correlation.

The application to the transition probabilities seems completely
negligible and will not be discussed.
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5, Use of Expected Values

el

Let H denote the set of numbers, ('o’xo’yo’ V9% 3Yyd eee}
wrsXr,¥y), that constitute a history. The estimate W is a simple
function of H:

W= m(:xI,yI)wI , (73)

There are many other functions of H that can be used to estimate z.
Because most of them can be intuitively justified by replacing a
randem variable by its expected value, they are discussed in this
section. The estimate in Equation (73) will be referred to by the
symbol LJ. and will be called a Type I estimate. A few other functions
of H that can be used will now be discussed.

Type II
Instead of recording the weight of the particle after it jumps
into the trap stats, the computer calculates the weight that every

coliision 18 expected to put into the trap state by:

I
L, = ;wip(: i,yi)n(:xi,yi) (74)

The expected value of any term of L2 can be obtained by
calculating the expected value of the weight given that the particle
iz at (x,y), and then averaging over all (x,y).

The fcrmer is given by

vi(:x,y) a Hi(x,y)/Pi(x,y), (75)
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the latter by

vip(:xi,yi)n(xxi,yi) = .[/';I(:x,y)p( éx,y)n(:x,y)?i(x,y)dxdy (76)

= ,‘//)li(x,y)p(zx,y)n(:x,y)dxdy .
If each term is replaced by its expected value the sum must be taken
tc infinity instead of just to I and

zz = gﬂ'ﬁl(x,y)p(xx,y)n(=x.y)mr ()

3 7 M(x,y)p(:xyy)m( :x,y)dxdy

22z,

The expected valus of Lg can also be calculated

I‘g = ;wg*xy%)ﬂ(uj,rj)vi 1xy,7, Ja(:x,,7,) (78)
=0 —>I

I 22 2 el gl
3 igow’.p (:xl,yi)n (“‘i’yi) +2 ; j=1+\{jp(:xj,yj)n( :xj’yj)'ip(:xl’yi)'(‘xi’yi)

The axpected valus of the 1i'th term in the first =sum is

v,z_pz(:xi,yi)nz(:ziyyi) =4 wi( 32,7)92(8!,y)lz(x«,y)1’1(x,y)dxdy (79)

= 0 Q,_(x,y)pz(u,ir)nz( x4y )dxdy

since vi(:x,y) = Qi(x,y)/!’i(x,y). (80)



If the (vj,xj,yj) were independent of ("L’xi”i)’ the second
sum would drop out of the calculation of the variance. Because

there i3 a positive correlation between the two sets of random
variables the variance 1s incressed. It is convenieat at this point

to make scme additional definitions.

pi(x',y':x,y) = {]f:i_r(x,y.:x',y")pr(x",y":x',y')dx"dy" 1<r<i-1
Pl(xyﬂx':?') = p(xyy3x*,y')
Ki(x,yzx' ') = _Aﬂxi_r(x,y:x",y')xr(x',y":z' 7' )dx"dy" 1< r< i-1

K (xyy3xty7) = mlxyy:x’y3' )p(zy332ty3!)

= K(x,y:x*,3")
l’_(x' yy'ix,y) = Ki(x',y':x,y)/pi(x',y':x,y) .

pi(x,y:x' yY') is the probability that a particle which starts at (x,y)
1s at (x',y') on 4ts 1'th collision. K, (x'yy':x,7) is the expected
weight at (x',y!) after 1 collisions, given that the particle starts
at (x,y) with weight one. ni(x' 37':x,y) is the expected factor by
which the original weight of the particle is multiplied if the
particle goes from {x,y) %0 (x',y') in 1 collisionms.

The expected value of v, in the second sum of Equaticn (78) ia

-\a( ,xj ’yj ’“i’xi’yi) = Vinj_i(xj.’yj 3x19y1) .

(81)

(82)

(83)

(84)
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The expected value of hj_i(xj,yj:xi,yi)p(:xj,yj)m(:xJ,yJ) for given

(x,57,) 1a
Sy (x93 1% 57, )0C%, 57 0%, 07 Iy (%97 3%y 47 Jx Ay (85)
A R R B S 33 S Rt Rt D2 St Rt RS S R B
=_{/xj_i(x,y:xi,yi)p( :x,7 )m( :x,y )dxdy

= Sj_i(:xl,yi) .

The expected value of the (1,j)'th term of the second sum in
Equation (78) is

,{fsj_i(x,y)vi( 1%,y )p( :xy7 )m( :x,y)?i(x,y)dxdy (86)
={/Sj_i(x,y)p(:x,y)n(:x,y)Ql( X,y Jdxdy

The sun from j=1+1 to © replaces the Sj_L(:x,y) by[S(:x,y) - So(:x,y)].
The sum from {3 to c© replsces Ql(x,y) by Q(x,y) i{n both Equations (79)
and (86). Making these changes and substitutirg So(x,;() = p(:xyy)m(:xyy),

the expected value of Lg becomes
L§ 2 U xyy)p2( 1 xp7 M2 13y Jexdy + 2.AO'S(m,y)Q(x,y)p(:x,y)m(=x,y)dxdy (87)
- 2 £/ Qxs3)p2( 1xy7 w2 %,y Jaxdy
= " Qxyy)p( :x;y)n(m,y)E?th,y) - p( =x,:r)n(=x,y)] dxdy

Li - L; =JQ(x,y)p(:z,y)m(:x,y)[m(:x,y) + p(:x,y)m(::,y‘) - ZS(:x,yﬂ dxdy. (38)
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The method is useful when the appropriately weighted average

n(:x,y)[l + p( :x,yﬂ - 28(:x,y) >0 .

In some problems S(:x,y) 1s of the order am(:x,y)R(:x,y).
Using this rough estimate roughly gives

p(:x,y) < 1 = 20R(:xy7)

for the condition that is necessary for Lg to be less than Li. The
implicaticn is that the estimate is useful when p(ix,y) or R(:x,y)
is small. This is in contrast to a type I estimate which works best
when p(:x,y) or a suitable average of R(:x,y) is large.

The method is particularly advantagecus when estimates of
_the function M(x,y) are desired. The usual estimate of M(x,y) is
given directly by the history, H, and can be written

~ I
M'(x,y) = 8(x = x,)8(y - y,)¢
b % igovi x=x )08y -y,

If the results for a number of histories are averaged and smoothed
out in the manner discussed in the section on estimating 3(:x) and
2%( :x), then something like a Type I estimate of M(x,y) is obtained.
The corresponding Type II estimate wculd be

i(x,y) = ; viK(x,y:xi,yi) + )(o(x,y).

Equation (92) has a familiar look. It corresponds to improving an
approximate solution, M'(x,y), of an integral equation by iteration.
N'(x,y) is substituted into the right side of Equation (1b) and

integrated. Ain iterative procedure of this type is especially

(89)

()

(91)

(92)
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eoffective when there is a large separation between the first two
eigenvalues of X(x',y':x,y). In the present statistical situation,
{teraticn may be useful even if the conditicn on the eigenvalues 1s
not satisflied, because every sample is allowed a better chance to
contribute effectively to the answer. The expected value and
variance of the estimate can be calculated in a straightforward

manner;

= L2 2] -
M(x,y) = 1; {vi(:x‘ ,y')!(x,y:x',y')?i(x' 3 dixtdy! + Mo(x,y)

= gﬂx(x,y:x' ,y'))(i(x' 7' )axtdy! + Ho(x,y)

= K(zyyixt 7! M(x!yy' axtdy! + M (x,3)

= M(x,y)

= 2 L2 2
(x,y) = 1; .Lﬂ'vi(zx',y')x (x,y:1x!,y* )Pi(x',y‘ Jax'idy!

(- -] -~
+2 g{f“‘;(:x'ﬂd)x(xﬁzx'ﬂ')PL(X',Y')dX'dY‘ Z ﬂ

=
K(zyyix®yy"m ) (x"y3%:x'y3")p,_, (x"5y"5x! ¥ Jax"dy”

@
+ mlo(x,y) ;ﬂ\?’_(:x‘ yJV K(xyy:x?,7¢) Pi(x' ,y!)dx'ay!

+ Hi(xyy)

(93)

(94)
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= [/ Blx,yixtyy! R(xt,y! Jax'dy!
A

: t ] ! ] dxld ! K - ( : ] |)
+2 g {fx(x,y x'yy')Q (x'yy )dx'dy gﬂ. PRI Lt

+ mo(x,y)[l!(x,y) - Ho(x,yﬂ + H'g(x,y)
={/x2<x,y=x',y'>a<xu,y->ax'ay' * 2 Kxyyetyy Ryt

[M(x,yzx’,y') - K(xyyixtyy')] ay'ay!
+ 2 (x,7)M(x,7) - H(x,7)
={fx(x,y:x',y')Q(x',y' ) [2H(x,y:x',y') - I(x,y:x',y'] dx'dy*

+ mo(x,y.)ﬁ(x,ﬂ - Hi(x,y)

where

®
M(x,y:x'yy') = %.Ki(x,y:x' ') (95)

1s the expected total weight at (x,y) if the particle starts at

(x',y'). The variance of the estimate is

N = i - P (96)
={K(x,y=x',y')Q(x' 7") RMxyyixty3t) = Klxyyextyy! )] axtay!
92
-[H(x,y) - Mo(x,y)]

The expression could have been obtained directly from Equation
(87), essentinlly by substituting K(x,y:x',y') for p(:x',y'm(:x!,y').
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It seems difficult to make any general comments about Equation (6)
without making further assumptions on K(x',y':x,y)j therefore they
will be deferrsd to the chapters on applications.

It is scmetimes inconvenient to coampute p(: 1,yi)m( :xi,yi) or
x(x,yzxi,yi) for use in Equations (74) and (92) respectively. In
particle diffusion problems particularly the expressions nay become
simpler if the collisions are "mixed." For example, if X1 is used
with A the first estimate is changed to something of the form

1
L, = j.§v.«ip(xxm,l,yj_)m(:xi,yj_,::1:'_1)111(::1_4,]_:xi,:,'i) (97)

The detailed discussions of these estimates are alsc deferred to the
chapters on applications.

Type III

The Type I estimate can usually be obtained very cheaply even if
one of the other sstimates are being used. It might therefore be
conjectured that it would be afficient to use an appropriate average
of Type I and any other estimate. For example

L3 =a.II.1 + % L2 (s8)
qry = 1
is an estimate of 3 with a variance of

2 _ 2.2 2
A ad el t2aa Lo + S (59)
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It is shown in Section 6B of the previous chapter that 0'3'2 is
cri -.Pclez
nn.i.nimnifcl=—z - PR The variance then beccmes

2
2. ele'g(l#’z) (100)

3 )
°'12.'2’°i°'2*°'2

Whether it is advantagecus to use this estimate depends rather
sensitively on #and y = c‘z/crl [and on the computer's ability to
estimate ca « It is particularly advantageous if .2 is negetive. The
exact dependence on-© and vy is given in Graph 1 of Chapter II. .2 is
given by the standard formula.

poo; = -Ll_Lz - 7132 (101)

- =2
—Lle-z

—_— ® @
L L, = ; g wpa(ixpey v m(:x, 53, )p(ix, 57, ) (102)

The expected value of any term in the above sum is easily calculated:

'w_I(:xI,yI,vi,xi,yi)m(:xI,yI)win(zxi,yi)p(: 1”1)
(103)

wpalsxpyyplvymlex, v, Jp(ex, 3,

= my_, (xpyyy: i,yi)n(sz,yI)\vrim(:xi,y’_)p(::::L,yj_)
= LAy (xpsypixy 7, m(sxpy 7 )pCixgsyy Wiz 53, )
a(axy 33y )p(axy 57y 0Py (31577330574 )

Pi(xi,yi )dxidy 194%4y 1
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=/]//KI_1(3‘17YI33‘1’3'1)3(:xlin)P(gth‘/I)
M( :xl,yi)p(: i,yi)Qi(xi,yi)dxidyidede
=/ﬁr_i( =x1’yi)l( H i)YL)P( : i’yi)qi(xi’yi)dxidyi
Sumaing from I=L to @ gives

@ .
LL, = E'&S(: Loy ey yy, Ip(exg sy, 0Q, (=97, Jax, dyy (104)

= _//8(x,y)m(:x,7)p{:x,7)Q(xyy)dxdy

=_/78(x,7)3(x,y)Q(zyy )dxdy
LI, =3

= [./jg(x,y)xo(x,y)dxdylz (105a)
=[//,(x,y)x(x,7)w]2 (105b)
= [[/9(xs}')ﬁo(x,y)dﬁyltfﬁl(x,y)ﬁ( x,y)dxdy] (105¢)

There will be some discussion of the application of these formulae in

Chapter VII.

Irpe IV

Scmetimes the transition functions ars of such a nature that it
is possible to write (zl,yi,wi) as a simple functdon of (xc,yo,uo).
Por example, if a history (M, 9% 1730y X797 ) oo jwpsXps¥p) has been
calculated, then an equally good history can be obtained by plcking
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a y! from P _(y:x ), eslculating vw! = (x,,y!) and then getting a

new history H' "'E’é”‘o”é"‘i"}.("o’%)' 7 (xsy8) oo wi,xi(H,y;),yi(H,y;)]-
The functions xi Ei,yg and yi [H,y;] are the x, and ¥y that would have

been cbtained if the history had started with (ug,xo,y;) instead of
(vo,xc,yo) and the same random numbers used. The vi.are calculated by

U'
wi = =2 mlx]yyiax ,ys) eee m(xlhyiexg 39y, 5) . (106)
o .

In most of the situations in which the technique is useful

Equaticn (1C6) reduces to

o®lo%

w‘" = (107)

¥1

When the calculation of xj'.,yi, and 'wj'_ is ccmparatively easy an
estimate, L‘,., cen be obtained by picking several yo's for each H
and averaging their estimates. This reversed splitting techrnique,
in which the "same” final history is joined on to differemt initial
polnts, is useful when there is a marked dependence on initial
conditions. It is especially cheap to do this when the new history
can be produced by translations or reflections, or rotations.

The history H' may want to terminate sconer or later than H
doesy a corresponding adjustment must be made by adding or dropping
(Ui,xj'.,yi) sets.

If the functions xi(H,yo) and yi(li,yc) are sufficiently simple,
it is possible to get a very useful estimate by integrating a Type I
estimate over all possihle y‘;. Let Bi be a subspace of yé such that

all (x}yy])yJ < 1, are in A but (x{,,,7{,;) is in the trap state.
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Then, using the Type I estimate for H' and integrating over all
Yo in Bi

= [} ]
LA = 1; {iviu(:xi,yi)l’(yozxo)dyo (108)

In zcet problems the Bi. go to zerc at some finite i. Whether
or not this happens, it is always possible to use a Russian Roulette
procedure to keep down the mumber cf terms (Section 7). Tyi:e by s
estimates are important not only because they cut dcwn the variance,
but because the computer, using the same histories, can study
simultanecusly different A regions or different initial conditicas.
This last often results in a very large saving cof computing time.

~ Some typical situaticns in which an integration over initial
values can be useful occur when ¥ i3: a pcaition variable in plane
slab problems; an energy variable when the diffusion process is
independent of the energy; an angle variable where it 1s possible
to take advantage of some symmetry ccnditionj an angle variable for
a prodlem Ln which, by revolving the histcry, a target arca can be
hit with a high degree of prcbability; stc. |

Type ¥

Integration over ini%tial conditions can bhe combined with a
Type II estimate. Ths Bi must then be defined as the subspace of
J, such that ail [xi(ﬂ,yo),ys(ﬁ,yo)] are in A for § < 1. The

estimate is

~

@®
Lg = % S aipCaxd,ymexd ,71)P (v, i=)ey (209)
bt BL



A diudu.nuge of this technique over Type IV is the necessity for
calculating p(:x,y). In some problems this calculation is more
tractable if L5 is used with a "mixed" collision. I.-5 is useful for
the same sorts of situations as L‘. It is cobvicus that Ll. and L5
could alsc be defined in terms of an integration over x, instead
of ¥, ©oT it 1s concelivable that both integrations could be done

simultaneocusly.

Iype VI
If the kermel K(x',;y':x,y) has the form

K(x'yy':x,y) = k(y':x,y,x* )k'(x':x)

1t is possible to treat the k(x':x) as the kermel of a simpler

‘integral esquation
M(x') = /fk!(x':x)M(x) + M_(x)

M (x) = M (z,7)dy

and a set of histories in x calculated. Each history in x space can
then be used in calculating a history in y space. For example, the
angle and energy histories of a particle diffusing through a homo~-
geneous medium are independent of the space histories and a library
of energy - angle histories can be calculated in advance. This
library can then be used to calculate space histories for different
problems, or a Russian Roulette and splitting technique can be used
and many space histories calculated for a single angle-energy history.
In the early days of Monte Carlo when computing was done on I.B.M.

(110)

(1)
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punched card machinery or by band, this procedure was scmetimes
followed. It does not seem to be efficient for the high speed
computers.

In scme problems it is possible to write down the kernel
kl(yi:xo,'xl,...xi,yo) for the expected weight at y, given y_ and
the history in x space. If it is possible tc calculate integrals
| vith kl(yi:xc,xl,...,xi,yo) as part of the 1nte§rt.nd then a
potantially useful Type VI estimate can be made. For example if
(z,57{) 1s in the trap state and (x,57,) 1s 1n & then

®
L = 1SZ]..[/Q(:x,.,yj'.)k’.(y".: 3%y 90 00Xy 570 M (7 1% Jayldy,

18 an estimate c¢f z. The most important case where L, can be
calculated is uhen Y is a random variable associated with survival
or absorption, and x is all the cther variables of the proulems.

I’6 1s then evaluated in a trivial fashion to be the product of the
survival probabilities of each separate collisiocn. It is actually
possible tc evaluate L6 analytically in other cases, but the author
doas not knov of any in which the formulae ars not too cumbersome
to be useful. As always an equation similar to (112) could be
written for a Type II estimats instead of a Type I. '

* Martin Berger of the Natioral Bureau of Standards has in-
formed me that he is plamning to use an L, type estimate in
<reating the diffusion of yrays in finite plane sladbs where
the x space is the angle-energy history and the ¥ space the
distance into tre slab.

(112)
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6. Correlation

As ip Section 16 of Part II there are two fundamentally different
ways of correlating problems. The first, and possibly the most
important, is tc use the same Po(x,y) and p(x',y':x,y) and to let
the wveights and/or weighting factors be different for the different
problems. Specifically if two problems are determined by the
functions:

8. M (x,7),K(x'y7':x,y), and 3(x,7)

b. H;(x,y),x'(x',y‘:x,y), and z'(x,y)
respectively, the computer can use axy convenient P_(x,7hp(x',y':xy7),
and p(:x,y) to compute the partial history (xo,yo,xl,yl,...,xx,y]:).
The w

i
welghts and weighting factors:

's and W's for the two problems can then be obtained from the

8¢ -vo(x,y) = Ho(x,y)/Po(x,y)

m(x',ytix,y) = K(x',¥'1x,y)/p(x!y":243)
m(:xyy) = 3(xyy)/p(1xyy)

be wi(x,y) = M!(x,5)/P (x,7)
2! (x'yy':x,y) = K'(x',y!:3x,5)/p(x ¥ :x,5¥)
»!(:xy3) = 3'(x,¥)/p(1x,5)

As discussed in Part II, the strength of the correlation is
measured byro o = W' - ¥ W', WW' can be calculated as the expected
value of a randem walk. If S"(:x,y) and M"(x,y) are defined by the

(113)

(114)
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equations

8*(:x,y) = ,‘0'8"( 1x!, 3 Jm(xT,y! 1x,7 )l (x5! :x,¥ )p(x' ¥ 13,7 )dx'dy!

+ p(ix,yhm(:x,y)m(:x,y) (114a)

,ﬂS' sx?,y! )K(x!,v!1x,7)K! (2,5 :x,7) lay! +z$xzz)z'%xzz)
A NI AR2 ) 4 P\iXyy

and
K" (x,3) = [Aa(x,y1x',7" mt (x,7:x! 537" )p(xyy3xt 7! M (x5! Jax'dy?
A
+ Po(x,y)vo(x,y)vé(x,y) (114b)
M (x,7)M'(x,y)
X ext  v! K (x.7:x! 7! M (2!, 7! A
st”‘ pxyyix!,y? dx'dy! +. P (x,5)
then
M, (2,7 M (X07) g4y (115)

Wi a{&n(:x,y) _'PO(x,y)

{{'M"(:x,y) z(xp )::3(:‘ ) dxdy

The other important methcd of correlation is to use the same
random mumbers at a corresponding point in the two calculations. It
{s then usually somewhat more than twice as costly to do ths two
problams than to do onme of them. By coatrast, carrying along an
extra weighting factor usually incrsases the cost by an aluost negll-
gible amount. The implication is that the variancs, if the second
method of correlation is used,; should be lesd than half of what it
would be Lf the first wers used. If, as defined iz Sectica 3,
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xj(xi-l’yi-l) and x"‘(x’i_l,y' 1-1) are equiprobability surfaces for
the two probleas, then using the second type of correlated sampling
on the x space is equivalent to picking the same j surface in the
twvo problems. In this case the expected value of WW' is given by

— A2 i=2 -
W' = ; W g WL+ 08 x5y 08 (=531 )0 [xi X} (x )Jx(xi,yfxi_l,yi_l)

1
(116)

vhere b[xi )]guu-n.nuea that xi and x, are on the same ]

- xs(xi
surfaces and the convention Las been made that SK = m(x: 1-1’3’1-1)?(”‘1-1”1-1)
end S'K' = m(:x} 1,y 1)p(:x{_1,7{ ;) when (xj,yj) is in the trap

state. Neither of the expressions in Equations (115) or (116) is
p.trticuhrly Tevealing. The reader will probably get more out of

considering the examples at the end of this section and in Appendix

V than by studying the above equations.

Parsmetric Study of Hn(x,y)

In many important uses of correlation by welghting, the effect
of correlatiocn, while beneficial, is secondary. The reduction in
cost is the primary reascn for using it. For example it may be
desirable to study what happens when different Ho(x,y) are used and
everything else 1s left unchanged. This situation could arise vhen
M (x,7) 1s cne of the design parameters being studied, or more
likely different M (x,y) correspond to different idealisations of
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the physical problem. It is almost no extra work to calculate three
or four problems simultaneously by using the same histories with
different wo(xo,yo). It is convenient in this case to stratify

the initial distribution of (x,y) according to scme P:(x,y) and to
let wo(x,y) =1, The Monte Carlc calculation can then be used to
estimate S(:x,y) and T(:x,7). The estimated S(:x,y) and T(:x,y) can
be J.ntegr:::ed against M_(x,y) and Hg(x,y)/Po(x,y) to get estimates
of T and 2° respectively for any HO(x,y) and Po(x,y). If 1t is
inconvenient to estimate S(:x,y) and T(:x,y), then labeling each

history with the subecript n, the (x__,7_ n,wn) can be recorded and
the estimates
3 3% % w l‘o(xv:m’ycm)
=l 2 P.Excm’yt:n'x}
:2 =§ 3 W )é(’:o§’yon)
=y 8 P *on'’on p *on?7on
used.
Pa X{xi ot

J
Lat X(x!,y':x,y) = ko(x',y':x,;r) + Zejkj(x',y':x,y)
de

J
3(x,y) = zo(x,y) + %Ejz:{x,y)

where the Ej are small. If the transition probabilities are

p(x',y':x,y) and p(:x;y) then

(117)

(118)

(119a)

(119v)



: 2(xpy¥y) Il K(xypq3¥y4q8%,07,)
W= T —(-u—"l'-LLS
Yo'%or7a) Blixgyyy) 120 PtXga10T3e1 %07y

-~ HO + Ho(xo,lc) ée.’YJ
vhere

3

3 (xp9¥7) I=1 K (X,0037441%07y)
V= ,o(‘o,,o)_%;r_% R o
PUXETT) gm0 Pl T PX407y
= _E_‘L,’ (xpyy) & ki(xr’l’y;ﬂ:xi’yi) -1 ko (X 37y 15997
Y3 T plxnyp) fo Plrp iy XYy peo Plip ¥ FXpdy)

k

z!(ﬁﬁ;) I-1 k_(Xy4q97,413%¢sY,)
PUtXpaTr/ gm0 P Ega1973413 %407
I-1

and the symbol W' means that the term r=i is left out of the
r=0

product. In an actual computation the Y; can be computed by a simple '

iterative scheme and not by the rather formidable looking formula in

the above equations. To first order in £,

J
e - J
z = Wo + % ejijolxo,yj

If the Monte Carlo celculation is used to estimaze Tio and Yjwoz::c,yj
then the computer can use these estimates tc study how 3 varies as a
in the region around €

function of € = 0. A much more interesting

J J
problem is tc assume that z is known and the Sj unknown. An example
of such a problem would be vhen the results of bulk scattering

experiments ars known and the computer wants to use these results to

improve the knowledge of the differential scattering cross sections.

(121a)

(121b)

(122)
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In this situstion the results of Kk different problems must be givena
with X > J. Each of the K problens then determines sn equation like
(122). By using a least squares technique it is possible to obtain

J aimultaneous equations wvhich can be solved for the eJ. It 4is not
knowun as a practical matter under wvhat conditions the process can be '
carried through accurately. The question is cuwrrently being studied
in connection with the problems discussed in Chapter VI, and it is
hoped that some results will be available soon.

Mlgosllaneoys Examples
Comparing Different Strategles a% Dray Fokep

Let us assume that the computer wishes to compare two different
draving strategies. A simple wvay to achieve correlation would be to
use identically shuffled decks and play out the two types of astrategiles.
This would not be very satisfactory though, because the two decks
would get ocut of step as soon as the mmber of cards drawn in the
two strategies differed. The obvious solution to the difficulty 1is
to discard the extra cards. This has the happy result that a zero
difference results vhenesver the two strategies are the same and the
Monte Carlo is being used to estimats directly only the frequency and
importance of the situations in which there is a difference between
the two strategles.

cmigg Different Bongg Stratogioa'

If a atrategic or tactical bombing campaign is studied by Monte
Carlo it is customary to irtroduce some or all of the following random
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elements.

1., Number of planes that abort

2. Mmber of planes shot down by area defense on the way in

3., HNumber of planes that stray through navigational errors

4. MNumber of planes shot down by local defense

5. Weather conditions over target

6. Flace vhere bombs land

7. Damage done

8. Good or bad reconnaissance

9. Number cf planes shot down by area defense on the way out

1. Number of planes that don't get back for a miscellany of
minor reasons

Because scme of the probabilities concerned depend on the number
of planes, the above problem is non-linear. This does not prevent the
use of any of the techniques suggested.

If the computer wishes to compare different bombing strategles
it is often effective to use correlation to cut down the sample sise
required to get significant information. If the correlation is done
by using the same random nmumbers, there will be different mumbers of
planss aborting, shot downy etc. The computer cannot use a single
list of randcz mmbers in wsequence in the two problems, for they
would soon get out of step. He can either throw away the exceas
random mumbers or what is scmetimes better, save them for use on
later strikes. For example, if a larger number of targets were
attacked on the first strike of strategy one, the extra random mumbers
that vers used to determine the weather on these axcess targets can
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1:;9 saved. If in a later strike an excese number of targets is
attacked under strategy two, the saved random mummbers can then be
used on these targets. Correlation can thus be achieved by using
the same random numbers whenever the two strategies give rise to the
same type of contingencies - even if they ars on different strikes
with different planes and targets.

If the different strategies are such that a definite type of
event is all-important to the compearison then corruhﬁon by weight-
ing may be better than using the same random mumbers. For example,
if the effect of different types of defsnsive armament are being
studied, the same kill probabilities could be used for the enemy
fighters in the sampling, and weighting factors carried along to
account for the differences. The correlation may be higher if this
is done, because exactly the same mumber of bombers ars shot down
each time, so all of the subsequent histcry is the same. If the
corrslating w;re done by using the seme random mumbers, different
numbers of planes would be shot down and the actual progress of the
two strategis campaigns would be quite different. It would still be
possible to obtain correlation by using the same randem mumbers for
the ssme typas of contingencies, but it is unlikely that the correls-
tion would be as high,

Apother case where weighting might be preferable to using f.ho
same random numbers would be when two different reconnaissance devices
wvers being compared. The possible weather situations can then be
classified according to the following criteria:

1. 3oth devices vork
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2. One works and the other does not

3. HNeither works

Cnly situation 2 makes a difference betwe'cn the two devices sc
that in the sampling only it should be allowed to occur. If 1 and 3
occur, the sample would glve zerc for the oét:!.nte, sc they need not
be calculated, cnly the percent, P, of time they cccur is needed.
This is automatically calculated by the weighting factors. If
instead of being an all or nothing situation the devices have dif-
ferent probabilities of werking as the weather changes, then the
appropriate modification must be made in the sampiing. If the same
randcn numbers were used to do the correlating then (1-P) of the time
the sample would be wasted.

Poh.rization’

In tracing y rays through a medium it simplifies the problem
greatly to assume that the y rays are unpolarized. This assumpticn
can be checked by doing two correlated problems, one using the exact
laws and the other the epproximate one that is obtained whea it 1is
asstmed that the particles are unpolariszed. If weighting factors are
used to do the correlating they would fluctuste wildly because the
differential scattering laws are quite different in the two cases.
The actual effect of polarization turns out tc be quite small in most
problems of interest. This is shown very sffectively if the correlating
is done by using the same random numbers. It then turns out, in most
situations, that even though quite different azimuthal angles are picked

®* The above technique has also been used independently by Lewis V. Spencer
of the Xational Bureau of Standards.



in the two problems every time a y ray scatters, the answer is not

affected very snarply.

K(x',y01x,7) = k(ytix,z,x ki (x!1x),

When the kernel of the integral equation is as in Equation
(110) and the computer finds it very easy to treat Equation (111)
either analytically or by some numerical technique, then the
techniue at the end of Section 18 of Part IT [Eliminating the
Variance of Z(:x)] can be usad in the manner described there o

cut down the variancs.
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7. RUSSIAN ROULETTE AND SPLITTING

In Section 2 on Importance Sampling there was a fairly
complete discusaion on the cirteria to use in choosing transi-
tion probabilities for a Monte Carlo calculation. Iln many
probabilistic problems, hovevyr, the set of transition probe
abilities and weighting functions given directly by the physi-
cal situation are often computationally much simpler to sample
from than the ones that the computer would choose if the princi-
ples of importance sampling were followed., It is possible to
use a non optinum (ia the sense of importance sampling) set of
transition probabilities and still spend most the computing time
on "important regions” by using Russian Roulette and Splitting.

The discussion which follows, assumes that a Type I esti-
mate 1s being used. If some other type is used an appropriate
modification of the formulae and results must be made.

The variance of a Russian Roulette and Splitting sampling
procedure was calculated in Part II by representing the
variance of the straightforward sampling procedure in a form

such as

' 2
[Pt o [Fm - 7] tix)ex
and then noticing that the first term is modified in a very
simple fashion if Russian Roulette or Splitting is used and
that the second tarm is not affected by the modification. The

2
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same technique will be used in this section.
If W(ix,y,w) is the conditional random trapped weight
given that the particle starts at (x,y) vith weight w and no

Russian Roulette or Splitting is used, then

W(ix,y,¥) = wS(1x,¥) (130a)
E(ix,7,8) = ¥T0x,7) Q)
The variancs ¥(:x,y,w) of W(:x,y,w) is given by the usual
expressiocn
T(:x,7,¥) = [‘vi(xx.y.w) - '?'(xx,y,w):]z (131)

- . [‘r( 1x,7) = 8¢ :x.y)]
Define w' as the weight of the particle after collision.
w' = wm(x!,y':1x,y) (132)
Then using Equaticn (30b) for T{ix,y) an integral equation can
be written for V(:x,y,w)
V(1x,7,%) = .{]“'2’!( tx',7" )p(x’,y" 1x,y)dx' dy’ (133a)
o a2z, 7)p(1%,7) = wS2(ix,7)
- (/V(tx',y‘ s )p(x',y!i1x,y)dx! dy’ (133p)
+_{ﬁ'252(=x',y')p(x‘ »¥' 1x,7)dx' oy
. won(1x,7)p(1x,y) - w25 (:x,7)
- {fv( 3x! 3,9 )p(x',¥" 1x,y)dx' dy' (133¢)

2
+_/f[w‘s(:x‘ »¥Y) - w&(zx,y)] p(x!,y' tx,y)dx'dy’

2
+* wer.m(:x,y) - S(sx,Y)] p(ix,7)
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The variance of the sampling procedure is given by

" 2
v -{ﬁl[:x.?.vo(x.r)]l’o(x,y)dxdy o{/[uo(x,y)s(:x,y) - ;] Po(x,y)dxﬂy

As alregdy indicated only the first term is affected by the

introduction of Russian Roulette and Splitting. It is con~

venient at this point to introduce a few definitions:

a. Wr(:x,y,w) is a conditional randon variable that is the

sum of the random trapped weights of the particles

produced by a parent particle that starts from (x,5)

with weight w. Because the expected value of the

trapped weight is not changed bty the use of Russian

Rouldtte or Splitting,

W (1x,y,%) = ¥(ix,y,w) (135)
= W(1x,5) »

The expected values of Wie(:x,y,v) is changed.

Let

™ (1x,y,%) = 'vl_'l-z(:x,y,w) (136a)

T(:x,y,vw) = ™(ix,y,v) - v252(=!.y,‘-) . (136v)

Ri i3 a subarea of A. The initial (x,y) point is

picked out of Po(x,y). If it happens to be in Ri,

a Russian Roulette procedure with a probabillity

qo(x,y) of survival is used. I the particle sur-

vives it is assignsd a weight

v, v (x,7)/q,(x,7) . (137

(134)
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The variance associated with this event is given by
[Cx7,00) 0, (x7) = volzn)st(x,y)]  (138)

!é-&-liisthonatof;. If the initial (x,y)

point is in R}, the particle is split into no(x,y)

independent particles, each of weight

v _e vo(x,y)/no(x,y) (139)

02
The variance associated with this event 1s

w(1x,y ,voz) B, (x,7) (1L40)

R.l(x:,y,v) is a subarea of A that depends on the parti-
cle position and weight. If the particle jumps to a
point (x',y') 4n Rl(x,y,w) then a Russian Roulstts
procedure with probability q(x',y':x,y,w) is used
befors the next collision point is chosen. If the
par<icls survives the Russian Roulette 1tvi given a
veight
v = w(x',y! 1x,y)/q(x ,y“zx.y.w) (1)

= w'/q(x!,y' 1%, 7,w)
The rariance introduced by an svent of this type is

[mCext iyt ubdalet sz w) = %%t 1)) (12)
Rg(z:,y,w) - A - R.L(x,y,u) is the rest of A. If
(x',7') is in Ry(x,7,), then the particle is split '
inte n(x',y’ zx,y;v) incdependent particles. Each of
these particles is given a weight
wh = w(x', 7' 1x,7)/n(x' ,y' 1x,7,4) (143)

- w/n(x',y 1x,7,%)
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n(x',y'1x,y,w) must be an integer, but in the very
rough derivation which follows it will be considered
as being a continuous variable. The variance intro-
duced by the n(x',y':x,y,w) independent particles is
n(x',y'1x,y,w)V(1x!,y’ ,wé) (1Lk)
Using 'a' %o 'e' the modification of Equation (133b)
appropriate to Russian Rouletts and Splitting can new be

written
™(:x,y,v)= /) [”( 1x!,y' v da(x!,y' 1x,y,v) - ',zsa( 1x',y' 39(3' »Y' 1x,7)dx"dy*
(1l5a)
. {fv*(:x' sT' vh)nlx! ;7 1x,7,w)p(x' 7" 12,7 )dx' dy"
2

* {/v'zsz( x' 7' )p(x',7" 1x,7) ax'dy’
"2!2( 1x,7)p(tx,y) - \1282( 1x,y)
. {ﬁ‘( sx' 3 pud ) q(x! 7' 12,7, w)p(x! 7 1,7 )dx'dy! (LuSb)
1
{f w(1x',y' wh)n(x' ¥ 12,7,w)p(x’ ,y" 1x,7)dx" dy"

2
veA(x,y,Rl) - v?B(x,y)

vzk(x.y,nl) -[/[uizsz( 1x',y')q(x! ,y" 1x, 5= v'zsz( 1x!,y! )]p(z' »Y' ix,¥)dx'dy?
' B ‘ : (1Lba)

- {v'zéz(zx' ,y')[——-i-—— - l]p(x' »Y'1x,y)dx! dy*
q

(x',y' 1X,y,w)

- v?.'[[sz(:x' 7! )az(xl »Y':x,¥) [T-'_l‘—- )' ]]p(x'. y'1x,7)dx' dy’
Rl qQ\X" ,7 31X, %V
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B(x,7) = /f820sxt ,y )m (x! 7' 1x,7)p(x! 7' 1x,y)ex' dy! (1)

* nz(sx.y)p(tx.y) - Sa(xx.y)
Equation (13L) becomes

V.r - _xf{f( :x,y,wol)qo(x,y)!'o(x,)‘) dxdy’ (1L7)

{fr(:x.y.wcg)no(x.y)po(x,y)m

2
+.[A7 !vo(x.y)s(my) - 'i] P (x,7)dxdy.

B(x,y) is independent of the choice of q(x',y':x,y,w),
n(x',y'sx,y,w), and the regions Rl and 32. If the ccmputer
chooses )
p(x',3'1x,7) = S(ix' 3" )K(x', 7' sx,7) /S (ix,y)  (1L8)
p(1x,y) = 3(x,5)/8{1x,7)
n(x',y' :x,5) » SCsx,7)/5(:x',5')
a(sx,y) = $(ix,y)
then it is sasy to show [by using Equation (IS)Jthat B(x,7)
is gero.

If in addition the region R1 is chosen to be zero so that
no Russian Roulette is used, then A(x,y,Rl) is zero and there-
fore also V*(.:x,y,w). Since the above choice weighting functions
aad transition prohabilitiaé correspands to optimum or zero
variance importancs sampling it is not completsly surprising

that the splitting procsss should still he zero variancs.
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It was shown in Section 19 of Part II that the Russian
Roulette or Splitting should be done in such a manner that the
weights \'ri or w, assigned to the final particle or particles
are independent of w', but unique (differert) functions of the
position. In the discussion which follows it will be assumed
that the computer has decided to carry out a scheme in which
the particle or particles will always end up with a ucighth
always equal to some function, 1/AU(x,y). Since this final |
welght does not depend on whether the particle has just gone
through the ordeal of Russian Roulette or merely split, ths
scheme will not be optimum, but it wdll be close enough for
all practical purposes. The scheme is as follows:

a. The region R! is determined by

v (x,7) < ljkn(x,y) (1L9a)

and the probability of survival
%W (x,y) = W(x,y)v (x,7) (1u%o)

Vo1 = Yol®¥)V/a (x,7)

= 1/30(x,y) (1L9c)

b. In the complementary region R}
v (x,7) > 1A0(x,7) (150a)
n,(x,y) = W(x,y)w_(x,5) (150m)

Vo2 = ¥ (x,7)/n (x,5)
= 1/30(x,y) (350¢)
¢ The region R,(x,y) no longer depends sxplicitly on
the weight since w = 1/AD(x,y) is a function of (x,y).



The region is determined by the inequality

1 ot 1
e I ey (151a)
and
q(x',y"1x,y) = L1635 20 gy )T :x,¥)
(x,y)

d. In the complementary region R,(x,y),

m(x',y'ix,7) 3 1 (152a)

U(x,y) T(x',y*)
n(x',y':1x,y) = U(xt,yt) m(x',y':x,7) (152b)
9(x,y)

It is clear that rules 'a’' te 'd' will result in the
particle always having a weight equal to the desired 1/2\0(x,y) .
Under these circumstances Equations (1LSb) and (1L7) become

WIE’J; 2 ]-/ﬁ’[m,r': 2 ]U(x.’r') a(x',y' 1x,¥)p(x',7' 12,7 dx' dy"
U (x,y) Ry (xt,y')) I(x,7)

’ffw[’x' 2 A lv )]U(x' oz n(x',y'1%,7)
Ro ('3t ) UlxT) p(x',y' 1x,y)dx" iy

A(x,y,R,)
v g+ Il (153)
AT (x,7) AT (x,7)

1
V7 - (ﬁ” Ex,y,m(

]W(x,y )wo(x.y)Po(X,y)dde (154)
Ql b 2% ¢

. é:f*[zx.y.

m(x,y)] NI(x,y)w o(x,y)Po(x.y)dxdy

A2
. {]—[wo(x,y)s(:x,y) - 3] Py (rraay



By combining the regione 81 and 32, defining

v(1x,7) - xzw [:x,y, ] (155)

W(x,y)

and making standard substitutions the equations

™ (:x,y) -/ﬁ'*(:x' sT) U(: ’y)) K(x',y'sx,y)dx'dy' (156)
b I 4

““"’Rz) B(x,y)
02(x,y) Uz(x,y)

V - -{ﬁ’( x,y)U(x,y)H (x:y)m (157)

2
/4 [',(x.r)s( tx,y) = 8| P (x,y)dxdy .
[

are derived. If the correspondence

S(x,y) = "*(:x,y)0(x,5) (156.)

s(xyy) = AETR2) | 8(ry) (158b)
U(x,¥) u(x,y)

Ho(x.y) > M (x,7) (158¢)

is made, then Equation (156) is the same as Equation (2b) and
the first integral in (157) is the same as (®a). Thersefare

by using the equivalent of Equation (3), (157) can be written

(x,¥,
'ffA YsR,)

ATA U(,)

_/f 3(‘ ’) H(x,r)dxdy

¥(x,y)dxdy (159)

2
+_{7E:°(x,y)s(:x,r) - ;] Po(x,y)dx!lr
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In addition to the varlance V7 of the sampling procedurs,
the cost C must be considered. Let:

Co be the sxpected marginal cost of starting a history.

Cl(x,y) be the expectad cost of tracing a history that
starts with weight 1/\U(x,y).

Ca(x,y) be the expected cost of terminating history that
Jumps to the trap state from (x,7)+ '

03(x,y) is the cost of. computing a new collision point
starting frem (x,y).

The expectsd marginal cost of a sample is given by

¢ = /78y (£7) 4, (x,7)P (x,7)dxdy » [ (x,7)m  (x,7)P (x,7)dxdy + C, (160a)

ol R2

- wl(X,!)U(x,r)vo(x,y)l’o(x,y)dxdy + Cq

= x,{jcl(x,y}n(x,y)xo(x.y)m +C, (160b)

C.l(x,Y) is determined by the integral equation
¢, (x,7) o Jf2 (x' 7 )al=t 3 1x, p)p(x! 7" 1%,y )dx ! (161a)
®
*..Rff L1zt In(x! 7 1x,¥)p(x?,y' :x,y)dx'dy"'
2
* [l - p(:x,y)] CB(x.y) + p(11,7)CH(x,7)

« /5 (x',3') M m(x',y 1x,y)p{x',y' :x,y)dx'dy' + D(x,y)
A - Uix,y)

o ffo(xt,yry BELZD) g(x1 iz, idxidyt + D(x,y) (161b)
A - (x,¥)
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where ‘
D(XQY) bl cB(X’Y) ¢ PB(ZJ)[CZ(XJ) - CB(X’Y)] (1616)
In the same way that Equation (159) was derived,
Equation (160b) and (161b) imply that
¢ = W/fi(x,7)D(x,y)M(x,y)dxdy + C_ (162)
A
Equation (159) and (162) are essentially the same as
Equations (224) and (227) of Part II. They are a little
more camplicated because A(x,y,nl) in Equation (159) is a
function of U(x,y). Using Equations (lléa) and (151b),

A(x,y,Rl) can be written

.Kx'

2 ) |}
A(x,75R,) = U(x.rly{(x’y)i—(-‘l-%&;fy—,f-g‘ﬂ dx'dy'  (163)

s?(1xt,y! Jme(x' 7" 1%,7)p(x' 7" 1x,¥)dx " dy"

i [R{(X’Y)

Therefore v., can be written:

v - -/ﬁ(x’y)wjf __L__JILMM dx'dy' (16L)

R, (x,7) U(x',y')

1[[M ff s (xx' ,y')ug(x',y'tx,y)

U(x.r) (x,
f ) p(x',y':x,y)dx"dy’

/f U—E’-‘:%;n( x,¥)dxdy

. 2
+{/{'°(!.1)3(:x,y) -z Po(zgy)dxd!
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By intsrchanging the order of integration, the first term can

be writtean:
2
1’_[/ S—S-L!-'-z)-dxdvjf K(x,yi1x!,y' )4(x*,y' )dx'dy’
VL Ux,y) RQ(XJ)
77 can then be written in the form
1 L
v7 - i VO + vo » | (165)
where
v o/ LET) iy y)axay (166a)
° 3 U(x,y)
2
v '{fE'o(x,y) - 2| P_(x,7)dxdy (1660)

2
V(x,y) - ‘1.52:!.2//‘ g(x,y,xo »Y' )H(x',y')dx'dy' (166c)
M(x,y) az(x,y)

/4 Sz(zx',y')nz(x'.r'ix,y)p(x',y'tx.r)dx'dr'
H(xsy)

+ B(x,y)
C can be written [Equatiou (162)]

Saagy+C (167)
vhere

35 = Uix,7)D(x,7)M(x, ) dxcty (167a)

Sy @ C, (16™)

12 v; Co
"= T (168)
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This value of \ malkas

v
Q ' :
v, - vc + q cive (165a)
0
c=c, +47; civy (169%)
Vo Vo | (1690)
t— - c; 1 93

@voco R \{c;)v;)z. o Ges)

To minimize CV7 with respect to U(x,y) it is sufficient to minimize
c;v;. - This minimum is obtained by taking

2(x,yd = m‘% (170)

wnere D(x,y) is the expected cost of calculating a single collision from
the point (x,y) and V(x,y) is approximately [tha first two terms of Equation
(16€c) have a tendency to cancal) B(x,y). B{(x,y) can be written {Equation
(160)]

B(x,y) = //S(.x',y’ m(x',y' sx,y) - S(:x,y)] p(x', 7' :1x,y)dx'dyt (171)

+ [Gx,7) = 8Cx,3)] Pp(ex,7)e

B(x,y) is therefore the variance of a random variable which has an expected
value S(:x,¥), a dlscrete probability p(:x,y) of taking on the value m(:x,y),

and a p.defs P{X',¥':x,¥) for taking on values S(:x',y').

This concludes the exposition of the more formal part of the theory
of Monte Carlo techniques,
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APPENDIX I

Generation of Psuedo-Random Numbers

It was shown in Part I that if one wishes to produce randcm numbers according
to any distribution, this can be done by choosing numbers from another distribution
and then performing certain arithmetical transformations on these numbers. There-
fore, when one talks about using random nuinbera, he need only talk about using a
certain basic set of random numbers and getting the other kinds of random numbers
from this basic set by 2 transformation. By general convention and ecnvenience,
the random numbers defined as being uniformly distributed between zero and one
comprise the basic set.

To call a set of numbers random is not so much to make a statement about the
properties of the numters themselves but a statement about their history. It implies
that the numbers wers produced by some sort of stochastic process. Iherefure,
when one talks about rardom numbers one is really talking about stochastic processes.
Ther's ars many processes which can be used to produce numbers, such as gambliag
devices of any kind, physical processes such as radio-active decay or "shot noise”,
etc. However, while it is perfectly possible to adapt such a device to a high speed
machine (and in fact this has been done in at lesst one case) it is actually incon-
venient to use such devices, both because of the minor technical fact that it 1s
difficult to tell when it i3 in working order and the much more important reason
that one wishes to reproduce a calculaticn to 3ee if it i3 correct. In order to do
this one has to know what random rmumbers sntared into the caleulation.

It is, of course, conceivable that if cne was using a random device one could
simply print all the numbers that are used and then resuse them in the check calcu-

lations or as an altermative one could prepare the numbers in advance. This is,
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of course, not convenient or practical because of the limited memory and inpute

output capacity of modern machines. However, there are extensive card tables and

several boocks of random numbers available, and The RAND Corporation has put out a

book with a million such numbers so that if desired one can use this alternative.
What is really desired is for the machine to compute in a perfectly determinis-

tic fashion a set of numbers which are operationally indistinguishable from

numbers which result from the random process. By "operationally indistinguishable”

1 statistical test. (These tests are dis-

vwe mean indistinguishable by an reasonable
cussed in the references.) Such numbers have been called "psuedo-random numbers®" and
thete are a number of methods for getting them. In this Appendix we will discuss
only one. The reason we restrict our attention to this one is that it seems to be
almost completelysmtisfactory for our purpose and while other methods can have scme
’ mingr advantages in certain situations, we know of nc case where the advantage is
. really important.

" The following is the method of congruences. Let So be any odd integsr between
1l and n. Llet Sy =k 51-1 (mod n). The choice of k and n depends on the machine
used. n is usually equal to the capacity of a single register in the machine, a
power of 2 or 10, according to whether the machine is binary or decimal, If the
multiplication ksi_1~ is done with double precision, then it is the n least signifi-
cant digits of the product which form the next random integer. R, = i/n are the
psuedo-random numbers in the interval (0,1).

One usually chocses k to be the largest integer, which will conveniently f£it in

‘one storage register, and which will realize the maximumm possible period lenzth of

- the sequence. It is chosen large mainly to avoid local correlation between the

1 By "reasonable" we mean "good enough for our purposee"z.

2 By "good enough", . . .



mumbers produced. When the congruence is modulo 2P, this period is at most PLaC

Ixpg>3 k= 5"'1 for any odd d will achieve this greatest length. If the con=

momeismdiﬂpmp,th.ntheuximnperiodils010"'2. ﬂazS:::dk-}d,

vhere d is prime to 10, the maximmm will be obtained. Thers are other multipliers

which will also do, but for these purposes, they seem to be equivalent.
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APPENDIX III

Constrained xa.ﬁ.ml of a Funetion

I. Consider the problem of finding the maximum of & function f(xi,...,xn)

subject to the inequalities
PEL N @

The above inequalities define & region in the (zl,... ,xn) space., If any of the

x; bappen to be equal to ii or b, ve will say that independent variahle is at a

boundary, otherwise, we will r efer to the independent variahble as being interior.
It is well known that at the maximum point the following equations have to be

satisfied:

%r— -O:Lfai<xi<bi (ximborior)
p

(2)

% :oifxi-bi
ar (xiataboundu'y)
=

The above equations are intuitively obvious. They state that at a maximum point you
can't increases f by changing the value of any x, by a small amount either because {
is stationary with respect to that x, or because the xy is at a boundary. (It is
of course possible that equation (2) will be satisfied and yet we will not have a

. marimum., We will defer discussing that possibility for & moment.)

1 The changes that have to0 be made for a minimum will be obvious t0 the reader.



In actual practice about the only way to solve a maximization problem likse the
above is to do it iteratively. An iterative procedure that works well in a largs
2
mmber of cases (when thers ars no intervals with ‘5&_1_'_ $ 0) is %o consider first the
1

system of squations

g- =0 for all x, (3)

b
After this system 13 solved one checks to see if any X, violate the limits

a, <x, 2b, (L)

If they do, one then moves these x, to their limiting values and sclves the

Teduced system of equations

af

&;: s (5)

for all the other independent variables. One then check:iagad.n 0 see which new X,

violate their limits and also if the previously placed x, should be left at the

) i
boundaries, and repeats the process until convergenca.

II. Let us now consider a slightly more complicated maximization problem. That
is, let us consider the problem of calculating the maximum of f(xl,...,xn) subject
to the new condition

B(xyse00x)) = K (6)
as well as the old conditions

8y SX 2By (M
g(xl,...,xn) = X defines a surface in the old volume. The point ("'1""’::1) must lie

on this surface. It is easy to ses, in this case, that at the maximum whenever one
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of the independent points is interior, that is

8, <X, <by (8)

that
of
=
2

That is, the rate of change of f with respect to any interior x; when divided by

= A , a constant for all interior x, (9)

the rate of change of g with respect to that same x, is a constant., The reason for
this is cleai'. I this ratio differed for any two interior independent variables
then we could for instance increase the x for which the ratio was large and decrease
the X value for the ratio which was small. By this means we could increase the
value of £ without changing the value of g. By the same line of reasoning then it

must also be true that for any x, that are at a boundary

af
&,
g Z A for xi L bi
1
(10)
of
;.
%:- ﬁ A for xi - ‘i
It is customary to write equations (9) and (10) in the -form
a _ .2
=" = <z <y
ar
z X - by (11}

)
=2 E
¥ 2%
=R

1A
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The above equations can be solved by the same sort of iterative procedure as
suggested for the first maximization problem. One first chooses some value of )\
and finds the (L"_,...,xn) that satisfy equations (11). One then substitutes this
(Zy5e009%,) 1n g(Xyy...,%;) (equation (6) ) to find K. In this way one can find K
as a function of A\. One can then find by inverse interpolation the \ that makes
8(Xy50.0,%,) oqual to the desired value of K.

III. Let us consider a third maximization problem: to choose £(x) to maximize

B |
I- /LEf(x),x]dx (12)

A
subject to the conditions B

M ?(x),x]dz - X (13)

a(x) < £(x) < b(x)

It 1s clear that if we divide the interval (4,B) into n subintervals and write

n
I =~ Z.L[f(xi),xj] ax,
Zl t(x ),x =K

i=1

(1)

alx,) < f(z,) < b(x,)
that thers is a formal similarity with Case II with
£(2,) —» X
I=>1(x),..05x,)
Zn frtx)),x, Jax, — g(xp 00003 (15)
i=l a(!,)--—);i

b(xi) —)bi



so that I will be a maximum when

g% 2 g when a(x) < £(x) < b(x)
L>2F wmen £(x) = bix) (16)
aL _, M

T when £(x) = a(x)

and the iterative method of finding the solution is identical to Case II.
woshauldmntionﬂntinnnymuinﬂntm'hmwhsd ‘

:-[ (x) 4x
an
ff(x)dx-x-l

ﬁil--x

£(x) = JEE (18)

-2

that equations (16) becoms

o Jdglx)

J ¥z

L. J. Savage pointed out to me that one can get the same result by using Schwarsz't

- Inequality which states

2 2 2
/a (x)dx [ p°(x)dx :[/c(x)ﬁ(x)tn} (19)

~ with equality if and only a{x)olp(x). We can simply take a.z(x) = g(x)/f(x) and

82(x) = £(x).



- 206 -
APPENDIX V

The Variance Assosciated With Double mtmtic Hlixg

In discussing double systematic sampling, it is advantageocus to define two
new functions yj(x) and z(:3) by

7y (x)
/ g(nx)dy -15’-1@ 321, 2,008 (1)

- OO

s(3) -/z[x,yj(x)-_] £(=)dx | (2)

For any x, the probabtility that y < 73 (x) is 1#3 vy (x) is therefors a
curve of equiprobability. 3(;J) is the expected valus of a(x,y) along this curve.
The more ar less horizontal strip defined by Yj-l/z(x) <Y<T5 /2(::) will be
called the 32 row, the vertical strip defined by X412 < %S Xyg/p is called
the 122 colum. The region of integration is divided imto N2 subarsas by the
intersections of the columns and rows. The points picked in double systemaddis
smapling lie approximately in the csnter of N of thess subareas on the intersec-
tions of the curves 74 (x) and the vertical lines defined by x = X, One and only
ons of the selected subareas liss in each column and row.

It is instructive to consider the variance of this sampling schems when it
is used to svaluate a triple rather than double integral. It will thersfors be
assumed that there are three indepandent random variables (W,X,Y) and that the
quantity to be estiiates is

e J[[ staz,ntmz,r)anxdy (3)

The :onditional p.d.f. for W is
h(mzx,y) = £(w,x,7)/2(x,7) (L)
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The standard definitions

3(:z,7) = / 2(w,x,y)b(wsz,y)aw (5)
;!(tx,y) - / sz(v,x,y)h(mx,y)dl (6)
Pl1x,y) = ;7(,,,,) - #2(1x,7) (7

are also needed. If sz(zx,y) ® 0, w i3 a deterministic function of (x,y) and the
- presults for the triple integral reduce to the double integral.
If the (xi,yi) are picked without replacement as described, tut the w, are

selected randomly from h(tnxi,yi) then the variance 1s

vy . (13 - ;)2 (8)
' ' Nz
'ﬁ %Z{.’("v‘i”i) - ;]}
| 2
- 3 [tz - 3] 3D [stmpsmyon) - ] blrpzpry) - 3

1+)

- % Vl * %(l -1) [I(I,x.y) - ;] [.('l,x].-yl) - ;]

_ where the primes indicate that (x',y') is not in the same row or column as (x,¥).
w and w! are, of course, picked independently from their respective p.d.Zf's.
- ‘The second “erm is the difference in variance dus to double systematic samp-

ling. Denoting this differencse by St

S = E(w,x,y) - a E(w' WX,7) - i] (9)

-{[s(v,x,y) - i(nx,y)] . [i(:x,y) - i]} { [a(v' SX',7) = z(ixt, 7 )] +['|'(:x' ') - 's']}

- [;(:x.y) - i] [2(::'.!‘) - 5]
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because it is the only term in the sum of four products which is not Q. Before
the expected value can be calculated, it is necessary to write down the Joint
Ped.f. for (x,7,x!,7'). '
3(x,75x',7') = J(x',71x,7)2(x,7) (10)
Since (x',y') has the same p.d.f. as (x,¥) except that it is not allowed to fall
in the same row or column as (x,y), 3i(x' »7"1X,7) must be either sero or propor-
tlonal to £(x',y'). If the point (x,7) falls in the 22 colum and the 58 row,
then the area il(x,y) from which (x!,y') is exsluded is defined by |

a12 <X S X0

(11)
yj-l/z(x.) <y < yj*l/z(x.)
where i and j are to be considersd as functions of (x,7). Thersfore
o] (x* 7') 1in Al(x’Y)
(x5 ex,7) = o ) 12)
xl,yt ' j_n -
e rere i R AR R
Al(XOY)
The normalizing fastor, 1 = /f 2(x',y')dx'dy', 1s approximately equal to
AI(X,I)
1 - 2/¥ for (using squations (155), (164) and 174) ) the integral on 4,(x,y) can
be dons Ygol/z(") X1/ -
//f(x'.y' Jdx'dyt = / £(x* Ydx! /s(y' tx' )dy* *[r(x*)dx‘ /g(y' ixt )dy* (13)
A«(x,y) YJ 1/2(3') 1-1/2 -
Xie1/2
= gf /f(X' )dx' /f(x' dx*
-0 31.1/2

0

BT
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S can now be calculated:

‘//[ s(:x,y) - s f(x.y) // [(sx' ') - z] _{Sx—ﬁ‘r dx! dy* dxdy (1)
“‘Al(‘ay)

whare

A// [Z(:x',y‘) - E]f(x',y' Jax'dy* =
'L.l

(x,7)

- //[E(:x',y') - &2ty )axray - //[i(zx',r) - 3)t(x' 7 e ay
i
i

=0~ [ £lxt et ['(**'»r') - ey ey - f £(x! Jax! / EGxt,y) = Elaly ext day

- 31/2(x") X172

1

oo X, /2
= -%‘ /ifx' Yaxt {5 Ex',yj(x)] -3 f 2(x' )dx! [s(:z') - s]

Xi-1/2

=- 3B -3] - §[E0xy) - 3§ (15)



Substituting the result in equation (1),

1-Ps--j fI Flx,n - 3] [5G - 8]ty - 3 [/ Btx,n) - AR - 3]

£(x,7)dxdy (16)

3*1/2(1) o0
- -% [f(x)dxi [( iX,7) - 3] [(:J) - :]g(yzz)dy - /[ (:x) = z]zr(x)qz
- O

31 ¥4 /(x) e
.- /f.(x)dx ,i{ Ex.yj(x)_] - 's'} By -3 - S HE i)

.- Z {3(s3) - l] - }1: HER ;}2

J"l

R ——————

36 -3 -} [ - 42

Neglecting terms in ? » it follows that

V- ’{Is(d) - slz . iz(:x) - z !} an

amd the variance i3 reduced by the sum of the fluctuations due to the variation
of 3(:3) and Z(ex).



